
MODELLING OF THE DECAY OF HOMOGENEOUS
MAGNETOHYDRODYNAMIC TURBULENCE BY USING COMPACT

SCHEMES

Dauren Zhakebayev
Department of Mathematicaln and computer modeling

al-Farabi Kazakh National University
71, av. al-Farabi, Almaty, 050012, Kazakhstan

dauren.zhakebaev@kaznu.kz

Ualikhan Abdibekov
al-Farabi Kazakh National University

71, av. al-Farabi, Almaty, 050012, Kazakhstan
uali13@mail.ru

ABSTRACT
This paper considers the numerical modelling of

the homogeneous magnetohydrodynamic turbulence decay
based on large eddy simulation. The modelling of the tur-
bulent process is based on the solution of a filtered unsteady
three-dimensional Navier-Stokes equation and the equation
of magnetic field strength. Dynamic model has been ap-
plied to close the main equations. The problem is solved
numerically: the equation of motion by modified method
of fractional steps using compact schemes, the equation for
pressure - by Fourier method with a combination of ma-
trix factorization, the equation for the magnetic field - by
the method of fractional steps. Change of the kinetic and
magnetic energies of the turbulence obtained over the time
depending on the properties conductivity of the medium. A
patterns are defined for longitudinal and transverse correla-
tion functions.

INTRODUCTION
An examination of the homogeneous magnetohydro-

dynamic turbulence decay process, in spite of the large
number of publications in this field, is a relevant task for re-
searchers of several generations. The influence of magnetic
field on the conducting fluid is studied in various fields of
science and used in an engineering and technology. There-
fore, studies of magnetohydrodynamic turbulence decay is
an important task in the fields of: forming astrophysical and
geophysical phenomena, MHD generators, plasma acceler-
ators and engines.

Research problems of the magnetic field influence on
the electro conductive fluid is divided into three types:

• examination of the MHD turbulence at a constant value
of the magnetic field.

• examination of the self-excitation of magnetic field at
a given velocity of the flow.

• examination of the self-excitation of magnetic field and
the motion of a conducting fluid at the same time taking
into account acting forces.

This work is devoted to study of self-excitation of mag-
netic field and the motion of the conducting fluid at the same
time taking into account acting forces. The idea is to specify
in the phase space of initial conditions for the velocity field
and magnetic field, which satisfy the condition of continu-
ity. Given initial condition with the phase space is translated
into physical space using a Fourier transform. The obtained
of velocity field and magnetic field are used as initial condi-
tions for the filtered MHD equations. Further is solved the
unsteady three-dimensional equation of magnetohydrody-
namics to simulate homogeneous MHD turbulence decay.

The process of the magnetic field influence on devel-
oped turbulence was examined by Knaepen et al. (2004)
and demonstrated the possibility to apply a quasistationary
approximation to solve the second type problem and sug-
gested to use quasi-linear approximations to solve this prob-
lem at Rem = 20. Some results on the study of the magnetic
field self-excitation at a given flow velocity were reported
by Knaepen and Moin (2004); the modelling of diminish-
ing MHD turbulence by LES and DNS methods demon-
strated that the magnetic field at the initial time started to
decay under the influence of the total kinetic energy. This
effect is consistent with Joule dissipation. A similar picture
of the decay was not reported by the authors because their
main objective was the evaluation of the model adequacy
for the LES and DNS methods. Accordingly, there was a
justification of the modified dynamic Smagorinsky model
for simulation of temporal decaying MHD turbulence.

The results of the study of the third type problem are
presented (G.Sahoo et. al., 2011) and give a detailed inves-
tigation of pseudospectral direct numerical simulation, with
up to 10243 nodes, three-dimensional incompressible MHD
turbulence, and with no mean magnetic field. The study was
carried out considering various statistical properties of both
decreasing and statistically steady MHD turbulence on the
magnetic Prandtl number Pm taken over a wide range of
0.01 ≤ Pm ≤ 10. Turbulent characteristics were obtained at
a constant magnetic viscosity for different values of kinetic
viscosity.
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The numerical modeling of a homogeneous MHD tur-
bulence decay based on the large eddy simulation method
depending on the conductive properties of the incompress-
ible fluid is reviewed.

The numerical modeling of the problem is performed
based on solving non-stationary filtered magnetic hydro-
dynamics equations in conjunction with the continuity
equation in the Cartesian coordinate system in a non-
dimensional form:
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)
,

(1)

where ūi (i = 1, 2, 3) are the velocity components,
H̄1, H̄2, H̄3 are the magnetic field strength components,
A = H2/(4πρV 2) = Π

/
Re2

m is the Alfvén number, H is
the characteristic value of the magnetic field strength, V
is the typical velocity, Π =

(
VAL

/
νm
)2 is a dimensionless

value (on which the value Π depends in the equation for
H̄i). If Π << 1, then ∂ H̄i

/
∂ t = 0. The publicatio n by

Ievlev (1975) discussed in detail the physics of phenom-
ena related to the ability to disregard the summand ∂ H̄i

/
∂ t.
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the full pressure, t is the time, Re = LV
/

ν is the Reynolds
number, Rem =V L

/
νm is the magnetic Reynolds number, L

is the typical length, ν is the kinematic viscosity coefficient,
νm is the magnetic viscosity coefficient, ρ is the density of
electrically conducting incompressible fluid, and τu

i j, τH
i j is

the subgrid-scale tensors responsible for small-scale struc-
tures to be modeled.

To model a subgrid-scale tensor, a viscosity model is

presented as τu
i j = −2νT S̄i j, where vT = CS∆2 (2S̄i jS̄i j

) 1
2

is the turbulent viscosity, S̄i j = (∂ ūi/∂x j + ∂ ū j/∂xi)/2
is the deformation velocity tensor value. To model a
magnetic subgrid-scale tensor, a viscosity model is used:

τH
i j = −2ηt J̄i j , where ηt = DS∆2 (J̄i j J̄i j

) 1
2 is the turbu-

lent magnetic diffusion, the coefficients CS, DS are calcu-
lated for each determined time layer, and J̄i j = (∂ H̄i/∂x j −
∂ H̄ j/∂xi)/2 is the magnetic rotation tensor reviewed by
Muller and Carati (2002).

Periodic boundary conditions are selected at all bor-
ders of the reviewed area of the velocity components and
the magnetic field strength. The initial values for each ve-
locity component and strength are defined in the form of
a function that depends on the wave numbers in the phase
space:
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Figure 1. The equation of initial level turbulence, depend-
ing on the fixed wave number and the variational parameter
b: 1) b = 2; 2) b = 4; 3) b = 6; 4) b = 8.

where ūi is the one-dimensional velocity spectrum, i = 1
refers to the longitudinal spectrum, i = 2 and i = 3 refer
to the transverse spectrum, H̄i is the one-dimensional mag-
netic field strength spectrum, m is the spectrum power, and
k1, k2, k3 are the wave numbers.

For this problem, we selected a variational parameter b
and a wave number kmax, which determine the type of turbu-
lence. In Fig. 1, the parameter b varies when kmax = 10. To
model homogeneous MHD turbulence, the parameters kmax
and b can be set corresponding to the experimental data,
which was shown by Sirovich, Smith and Yakhot (1994).

To solve the problem of homogeneous incompressible
MHD turbulence, a scheme of splitting by physical param-
eters is used: At the first stage, the Navier-Stokes equation
is solved with no pressure consideration. For the approx-
imation of convective and diffusion equation members, a
compact scheme of a higher order of accuracy is used by
Abdibekov et al. (2013). At the second stage, the Pois-
son equation is solved, which is derived from the continuity
equation by considering the velocity fields of the first stage.
For the 3D Poisson equation, an original solution algorithm
has been developed: a spectral transform in combination
with the matrix run. At the third stage, the obtained pres-
sure field is used to recalculate the final velocity field. At the
fourth stage, the obtained velocity field is used to solve an
equation in order to obtain the components of the magnetic
field strength, which are included in the initial equation.

NUMERICAL MODELLING RESULTS.
Numerical model allowed to describe the homoge-

neous magnetohydrodynamic turbulence decay based on
large eddy simulation. For this task, the kinematic vis-
cosity ν = 10−4 was taken constant and the magnetic vis-
cosity were set in the range of νm = 10−3 ÷ 10−4. The
characteristic values of the velocity, length, magnetic field
strength were taken equal to: UCH = 1, LCH = 1, HCH = 1
respectively. Reynolds number is Re = 104, the magnetic
Reynolds number varied depending on the magnetic vis-
cosity coefficient. The Alfven number characterizing the
motion of conductive fluid for various numbers of mag-
netic Reynolds: A = Ha2/Rem, where Hartmann number is
Ha = 1. For the calculations used grid size 128x128x128.
The time step was taken equal ∆τ = 0.001.
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Figure 2. Variaion of kinetic turbulent energy vs. mag-
netic Reynolds numbers at different points in time: 1)
Rem = 103; 2) Rem = 2 ·103; 3) Rem = 5 ·103; 4) Rem = 104.

Figure 3. Variation of magnetic energy vs. magnetic
Reynolds numbers at different points in time: 1) Rem = 103;
2) Rem = 2 ·103; 3) Rem = 5 ·103; 4) Rem = 104.

As a result of simulation at different magnetic
Reynolds numbers were obtained the following turbulence
characteristics: kinetic energy, magnetic energy, integral
scale, Taylor scale, transverse and longitudinal correlation
functions.

The results displayed in Fig.2, show the influence of
the magnetic viscosity on the decay of kinetic and magnetic
energies calculated at different magnetic Reynolds num-
bers.

Fig.2-3 show the dynamics of the mutual influence of
magnetic energy on kinetic energy at the different time in-
stants: at the initial time the kinetic and magnetic ener-
gies are given the same,at the next instant,when the fluid
is studied with high conductivity (Rem- small), the decay
of the MHD turbulence occurs faster, than when Rem starts
to rise, which specifies fluid with less conductivity, and at
Rem = 104 the decay of magnetohydrodynamic turbulence
practically corresponds to the decay of isotropic turbulence.

According to semi-empirical theory of turbulence in-
tegral scale should grow with time. The results presented
in Fig.4 illustrates the effect of magnetic viscosity on the
internal structure of the MHD turbulence. Variation of
the coefficient of magnetic viscosity leads to a propor-
tional change in the integral scale. Fig.4 shows that the
size of large eddies rapidly increases at small number of
magnetic Reynolds Rem = 103, than in the case, when

Figure 4. Change of the integral turbulence scale calcu-
lated at different magnetic Reynolds numbers: 1) Rem =

103; 2) Rem = 2 ·103; 3) Rem = 5 ·103; 4) Rem = 104.

Figure 5. Change of the Taylor scale calculated at
different magnetic Reynolds numbers: 1) Rem = 103;
2) Rem = 2 ·103; 3) Rem = 5 ·103; 4) Rem = 104.

Rem = 104 which leads to fast energy dissipation. Fig.5
shows the change in the micro scale - calculated at differ-
ent numbers of magnetic Reynolds 1)Rem = 103; 2)Rem =
2 ·103; 3)Rem = 5 ·103; 4)Rem = 104.

Fig.5 shows the change of the Taylor microscale at dif-
ferent magnetic Reynolds numbers. It can be seen that in
the case Rem = 103 when the magnetic viscosity coefficient
is large then the dissipation rate increases. In the case when
the magnetic viscosity coefficient is smaller then the scale
gradually increases, and the small scale structure of the tur-
bulence tends to slowly isotropy. This also indicates that
with small numbers Rem the decay of isotropic turbulence
occurs faster than in the case when Rem is high.

Fig.6 shows the changes of the longitudinal correlation
function calculated at Rem = 103 and Rem = 104. The Fig.7
illustrates the changes in the transverse correlation function
calculated at Rem = 103 and Rem = 104. These illustrations
also show that there are an influence of the magnetic field
on the isotropic turbulence decay, as these figures are fixed
the result of changes in the correlation functions at different
Rem.

The correlation function is expressed the average by
volume the correlation ratio between the components of the
velocity at various points, the farther points are located be-
tween the various components of the velocity, the smaller
should be the correlation coefficients, i.e. they should be
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(a)

(b)

Figure 6. Change the longitudinal correlation function
f (r) when (a) Rem = 103 and (b) Rem = 104 at different
points in time: 1) t = 0; 2) t = 0.2; 3) t = 0.3; 4) t = 0.5.

(a)

(b)

Figure 7. Change the transverse correlation function g(r)
when (a) Rem = 103 and (b) Rem = 104 at different points
in time: 1) t = 0; 2) t = 0.2; 3) t = 0.3; 4) t = 0.5.

close to zero. Figure 6a shows the change in the longi-

tudinal correlation function f (r) in time and calculated at
Re = 104, Rem = 103. It is seen that with increasing value r
of the function tends to zero. Character of the correlations
change corresponds to the change of the correlation func-
tions given (Abdibekov and Zhakebayev, 2011).

Basing on the results of the study, it has been found
that the first part of the turbulent kinetic energy is used for
turbulent mixing, the second part for creating the magnetic
field, and the third part for the forces of resistance between
the components of velocity and magnetic tension.

Conclusions
Based on the LES method with using compact scheme,

the influence of magnetic viscosity on the decay of uni-
form magnetohydrodynamic turbulence has been numeri-
cally modelled. The modified LES method in combination
of compact scheme is allowed to obtain a compact approx-
imation for the convective terms of the motion equations
of the third, and for the diffusion terms of the fourth, or-
der of accuracy. The obtained results allow to sufficiently
accurately calculate the variations of the characteristics of
uniform MHD turbulence with time at large Reynolds and
magnetic Reynolds numbers. A numerical algorithm has
been developed to solve unsteady three-dimensional mag-
netohydrodynamic equations as well as to model the MHD
turbulence decay at different magnetic Reynolds numbers.
The analysis of the simulation results makes possible the
following conclusion: the magnetic viscosity of the flow
has a significant influence on MHD turbulence and, there-
fore, can be used for the process control at the production of
semiconductor single crystals. Physical processes and phe-
nomena of uniform MHD turbulence were identified in the
numerical simulation. The proposed method can be used to
solve MHD turbulence without significant changes.
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