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ABSTRACT
Dynamic Mode Decomposition (DMD) is a

new post-processing technique that can extract from
snapshots dynamic informations relevant for the
flow. Without explicit knowledge of the dynamical
operator, the DMD algorithm determines eigenvalues
and eigenvectors of an approximate linear model.
DMD can be viewed as a non linear generalization
of global stability classically used for a linearized
system. This algorithm can be used to determine
the eigen-elements of the Koopman operator, an
infinite dimensional linear operator associated with
the nonlinear system. The ability of DMD to extract
dynamically relevant features of the flow has been
tested on an experimental PIV dataset of a turbulent
cylinder wake flow.

Keywords : cylinder wake, dynamic mode decomposi-
tion, reduced-order model

INTRODUCTION
For a turbulent flow, the number of active degrees of

freedom is so important that a preliminary step of model re-
duction is necessary for having a chance to understand the
flow physics or to derive a control strategy. The general
objective of model reduction is to extract, from physical
insights or mathematical tools, the building blocks which
play a dominant role in terms of modelling. In the case
of flow control, this question of educing physically-relevant
structures is even more difficult since by definition the flow
dynamics will be fully modified by the introduction of the
control. Reduced-order modelling is then more an art than
a science and finding the appropriate basis for represent-
ing the flow in a low-dimensional space is strongly related
to a given objective. Indeed, it is somewhat different for a
flow to understand the instability mechanisms, to educe the
coherent structures mainly responsible for the energy or to
represent the non-linear dynamics.

In this communication, we are focusing on a pro-
cedure recently introduced by Schmid (2010) called Dy-
namic Mode Decomposition (DMD). This algorithm was
proposed as a method that is able to extract dynami-
cally relevant flow features from time-resolved experimen-
tal (Schmid, 2009; Schmid et al., 2009, 2010) or numeri-
cal (Tu et al., 2011; Rowley et al., 2009a) data. Follow-
ing Schmid (2010), the DMD modes generalize the global
stability modes since it is not necessary with this method

to have an explicit knowledge of the dynamical opera-
tor to evaluate frequencies and growth rates associated to
each DMD mode. Moreover, we will see that DMD can
be used to determine the eigenvalues and eigenvectors of
the Koopman operator (Rowley et al., 2009b), an infinite-
dimensional linear operator associated with the full nonlin-
ear system.

In section 1, Dynamic Mode Decomposition is first dis-
cussed in terms of model reduction. Then, the DMD al-
gorithm is described in broad outline as in Schmid (2010).
Section 2 will present practical considerations necessary to
implement the DMD algorithm presented in section 1. Fi-
nally, in section 3, the DMD will be demonstrated on exper-
imental data corresponding to a PIV dataset of a cylinder
wake flow at Reynolds number 40000.

1 DYNAMIC MODE DECOMPOSITION
1.1 DMD and model reduction

Mathematically, model reduction can be described as
a projection method where the dynamical process of inter-
est is projected on an appropriate subspace of small size.
For physical reasons or practical considerations, the spatio-
temporal solution uuu(xxx, t) where xxx corresponds to the spatial
coordinate and t denotes time, is often searched as a sepa-
rated representation

uuu(xxx, t) =
Na

∑
i=1

θi(t)ΞΞΞi(xxx). (1)

For a dynamical process of given complexity, the num-
ber Na of modes in the expansion (1) depends exclusively
on the choice of the spatial functions ΞΞΞi. With an a poste-
riori model reduction technique, the spatial modes are first
determined (section 1.2) and then used (section 2.2) to de-
termine by projection the temporal coefficients θi. When
the dynamics of the system is linear, the eigenvectors of the
global stability problem, the so-called global modes, are of-
ten considered to derive a reduced-order model. This model
is known to accurately describe the linearized dynamics of
the system. When the dynamics becomes fully non linear, in
the turbulent regime for instance, then the Proper Orthogo-
nal Decomposition or POD (Cordier & Bergmann, 2008) is
the most well-known and used reduction approach. POD is
widely used since it extracts from a sequence of data an or-
thonormal basis which captures optimally the flow energy.
Unfortunately, energy level is not necessarily the correct cri-
terion in terms of dynamical modelling and deriving a dy-
namical system based on POD modes leads sometimes to
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irrelevant models. Here, the DMD algorithm will be pre-
sented as a method useful to describe the dynamical be-
haviour of the system in the linear and non linear regime.

1.2 General description of the DMD algo-
rithm

The data is represented in the form of a snapshot se-
quence, given by a matrix V N

1 defined as

V N
1 = (vvv1, . . . ,vvvN) ∈ RNx×N (2)

where vvvi is the ith snapshot. In the previous definition, the
subscript 1 denotes the first member of the sequence, while
the superscript N denotes the last entry in the sequence.
Moreover, in this temporal framework of DMD, we assume
that the snapshots are separated by a constant sampling time
∆t.

The DMD algorithm is built on two main assumptions.
The first hypothesis is that there exists a linear operator A
to step forward in time the snapshots. Since V N

1 is finite-
dimensional, this operator is written as a matrix A∈RNx×Nx

such that

vvvi+1 = Avvvi, for i = 1, · · · ,N−1. (3)

It follows that the subspace spanned by the data set

V N
1 =

(
vvv1,Avvv1, . . . ,AN−1vvv1

)
(4)

corresponds to the Nth Krylov subspace KN(A,vvv1) gener-
ated by A from vvv1 (Ipsen & Meyer, 1998).

The goal of DMD is to determine the eigenvalues and
eigenvectors of A but without first determining A. As such,
DMD can be interpreted as an extension of the classical
Arnoldi algorithm used to determine eigen-elements of
large size problems (Bagheri, 2010). In the Arnoldi
algorithm, the knowledge of A is exploited to determine
an orthonormal basis for the projection subspace of the
Rayleigh-Ritz procedure. In the DMD algorithm, the
orthonormal basis of the projection subspace is determined
with a ”matrix-free” point of view by considering that only
snapshots obtained from a time-stepper are available. The
matrix A is no longer necessary but the price will be an
ill-conditioning of the procedure (see section 2.1).

When the number of snapshots of the sequence V N
1

increased, it is reasonable to assume that, beyond a given
number of snapshots, vvvi becomes linearly dependent. The
second hypothesis is then to consider that the Nth iterate
writes as a linear combination of the previous iterates i.e.

vvvN = c1vvv1 + c2vvv2 + · · ·+ cN−1vvvN−1 + rrr

=V N−1
1 ccc+ rrr

(5)

where cccT = (c1,c2, · · · ,cN−1)
T and rrr ∈ RNx is the residual

vector. Following Ruhe (1984), we may write

AV N−1
1 =V N

2 =V N−1
1 C+ rrreeeT

N−1 (6)

where eeei is the ith Euclidean unitary vector of length (N−1)
and C a Companion matrix defined as

C =




0 0 . . . 0 c1
1 0 . . . 0 c2
0 1 . . . 0 c3
...

...
...

...
...

0 0 . . . 1 cN−1



∈ R(N−1)×(N−1). (7)

The Companion matrix C is uniquely defined by the co-
efficients ci. The eigen-elements of C are then only depen-
dent on ci. Indeed, as soon as these coefficients are known,
the characteristic polynomial of the transpose of C can be
calculated:

PCT (λ ) = λ N−1−
N−1

∑
i=1

ciλ i−1. (8)

Moreover, since the eigenvalues of a matrix and its
transpose are the same then the eigenvalues and eigenvec-
tors of the Companion matrix C can be determined. We
will see in section 2.2 the different ways for evaluating the
coefficients ci.

Let (yyyi,λi) be the ith eigen-elements of C, it can be

easily proved using (6) that
(

ΦΦΦi =V N−1
1 yyyi,λi

)
are approx-

imated eigen-elements of A, the so-called Ritz eigenvectors
and eigenvalues. The value of the residual rrr is a good mea-
sure of the approximation i.e. of the success of the DMD al-
gorithm. We will see in section 1.4 that these Ritz eigenval-
ues can be used to determine the frequency and the growth
rate of the linear process.

A few remarks are appropriate at this point. There is no
normalization step in the algorithm. Then, the Ritz eigen-
vectors are known except for a scaling factor. We will see
in section 1.3 that this scaling factor will be retrieved by ex-
ploiting some properties of the Companion matrix. More-
over, contrary to the POD modes, the Ritz eigenvectors are
not orthonormal. The determination of the temporal coeffi-
cients θi(t) will thus require an extra effort. Different pos-
sible strategies will be presented in section 2.3.

1.3 Eigen-elements of the Companion ma-
trix

Provided that the eigenvalues {λi}N−1
i=1 of the Com-

panion matrix are distinct, it can be demonstrated (Rowley
et al., 2009b) that C can be diagonalized as C = T−1ΛT
where T is the Vandermonde matrix defined by

T =




1 λ1 λ 2
1 · · · λ N−2

1
1 λ2 λ 2

2 · · · λ N−2
2

...
...

...
...

...
1 λN−1 λ 2

N−1 · · · λ N−2
N−1


 (9)

and Λ = diag(λ1, · · · ,λN−1). We then have an analytical
expression for the eigenvectors of C that is based only on
the eigenvalues λi. The matrix Φ̃ = (Φ̃ΦΦ1, · · · ,Φ̃ΦΦN−1) of the
Ritz eigenvectors is given by

Φ̃ =V N−1
1 T−1 ∈ RNx×(N−1). (10)
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Since T is invertible, (10) writes V N−1
1 = Φ̃T or

vvvk =
N−1

∑
i=1

λ k−1
i Φ̃ΦΦi k = 1, · · · ,N−1. (11)

Moreover, we can deduce from V N
2 =V N−1

1 C+ rrreeeT
N−1 that

vvvN =
N−1

∑
i=1

λ N−1
i Φ̃ΦΦi + rrr with rrr ⊥ span(vvv1, · · · ,vvvN−1) . (12)

In the DMD algorithm, the eigenvectors Φ̃ΦΦi are called
the DMD modes and the eigenvalues λi, the DMD eigenval-
ues.

1.4 Link with linear systems
A discretized version of the expansion (1) written at

any time instant k = 1, · · · ,N− 1 for the Ritz eigenvectors
reads:

vvvk =
N−1

∑
i=1

ΦΦΦiθi(k). (13)

Using the first hypothesis (3), it can be immediately
shown that

vvvk+1 = Avvvk =
N−1

∑
i=1

AΦΦΦiθi(k) =
N−1

∑
i=1

λiΦΦΦiθi(k)

= Akvvv1 =
N−1

∑
i=1

λ k
i ΦΦΦiθi(1). (14)

The DMD eigenvalues {λi}N−1
i=1 thus dictate the growth

rate and frequency of each mode. Since in stability we are
interested in the eigenvalues of the time-continuous matrix
associated to the time-discrete matrix A of the linear map,
it can be proved (Bagheri, 2010) that the growth rate σi and
frequency ωi are given by

σi =
ln(|λi|)

∆t
and ωi =

arg(λi)

∆t
.

We can deduce from this discussion that the most strik-
ing features between POD and DMD modes is that while a
given DMD mode contains only a single frequency compo-
nent, a POD mode contains in general a continuous spec-
trum. As a closing remark, we see that based on the Ritz
eigenvalues and eigenvectors, (14) can be employed to re-
construct the snapshots as soon as θi(1) is known. This
expression will be used in section 3 to reconstruct the data.
Finally, by comparing (14) with (11), we can conclude that
Φ̃ΦΦi = ΦΦΦiθi(1). θi(1) is then the scaling factor that links the
eigenvectors of the Companion matrix C to the Ritz eigen-
vectors obtained by the DMD algorithm presented in sec-
tion 1.2.

2 PRACTICAL CONSIDERATIONS
In this section, we will discuss practical considerations

necessary to apply the DMD algorithm as described in sec-
tion 1.2. Since DMD is a data-based analysis method, the
characteristics of the dataset (value of time step, number of

snapshots) are crucial. These points are discussed in sec-
tion 2.1. Once the dataset is chosen, the next ingredient is
the numerical method used to determine the coefficients of
the Companion matrix C. Different approaches will be pre-
sented in section 2.2. Finally, when the DMD modes are
known, we would like to reconstruct the original temporal
dynamics. For this, we need to determine the temporal co-
efficients θi(t). Different oblique projection methods are
discussed in section 2.3.

2.1 Choice of the dataset
In the original framework introduced by Schmid

(2010), DMD extracts dynamic modes which can be inter-
preted as a generalization of global stability modes when the
flow is linearized and as a linear tangent approximation of
the underlying dynamics for non linear flow. Whatever the
flow regime considered, an important parameter is then the
value of the constant time step ∆t between successive snap-
shots. Obviously, in order for the DMD to extract pertinent
flow processes, the flow must be sampled at a sufficiently
high frequency. However, if this sampling frequency is too
high then the snapshots will have a tendency to be correlated
in time and the DMD modes will not be unique following
Chen et al. (2012). The interpretation of Ritz eigenvalues
and eigenvectors in terms of global stability is then sub-
jected to an a priori good knowledge of the physical process
under study in order to choose correctly the value of ∆t.

The choice of the number N of snapshots contained in
V N

1 is also a matter of discussion. Indeed, for the DMD to
be unique, the first N−1 snapshots have to be linearly inde-
pendent and the Nth snapshot should be written as a linear
combination of the previous ones (second DMD hypothe-
sis, Eq. (5)). However, in most of the physical data, the
end of the linear independence is not so sudden. One way
of checking linear independence of the snapshots is to use
the Gram-Schmidt process. In an intermediate step of this
process, a sequence of vectors defined as

bbb j = vvv j−
j−1

∑
l=1

(
vvv j,bbbl

)
bbbl for j = 1, · · · ,N

is produced where (·, ·) stands for the Hermitian inner prod-
uct i.e. (www1,www2) = wwwH

1 www2. The variation with j of the ratio
‖bbb j‖/‖vvv j‖ where ‖bbb j‖2 =

(
bbb j,bbb j

)
gives a good indication

of the loss of linear independence when new snapshots are
added. Figure 1 corresponds to the case of the experimental
data used in section 3. The decrease of ‖bbb j‖/‖vvv j‖ is rather
slow indicating that the choice of the number of snapshots
to be processed by DMD is not obvious. As a consequence,
the DMD algorithm will be probably ill-conditioned and the
DMD modes may not be physically relevant. One way of
checking the DMD procedure is to a posteriori determine
the value of the residual rrr defined in (5).

2.2 Coefficients of Companion matrix
So far, the DMD algorithm was given (section 1.2) but

without describing how the coefficients ci of the Compan-
ion matrix C were found. The objective of this section is
to present different methods that can be considered. It is
possible in practice to:

1. Apply a QR factorization to V N−1
1 i.e.

vvvN =V N−1
1 ccc = QRccc or ccc = R−1QHvvvN (15)
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Figure 1. Variation of the normalized residual of the
Gram-Schmidt process with the index of the snapshot.

where QH is the hermitian conjugate of Q.
2. Perform a SVD of V N−1

1 i.e.

vvvN =V N−1
1 ccc =USVDΣSVDV H

SVDccc or

ccc =VSVDΣ−1
SVDUH

SVDvvvN .
(16)

3. Take the inner product of (5) with vvv j for j = 1, · · · ,N−
1. We obtain:

(
vvvN ,vvv j

)
= ∑N−1

i=1
(
vvvi,vvv j

)
c j.

If we now introduce the correlation matrix Ki j =(
vvvi,vvv j

)
and the vector www= (KN 1, · · · ,KN N−1)

T , we ar-
rive to the linear system of equations

ccc = K−1www. (17)

These three methods require a matrix inversion that can
be done only if the snapshots {vvvi}N−1

i=1 are linearly indepen-
dent. So here we find with a numerical point of view the
results of uniqueness presented in Chen et al. (2012).

2.3 Determination of the coefficients θi(k)
Equations (13) and (14) can be used to reconstruct the

temporal dynamics of the snapshots from the Ritz eigen-
values and eigenvectors. However, the temporal coeffi-
cients θi(k) first need to be known at all the time instants
k = 1, · · · ,N or at the minimum at the first instant k = 1.
Indeed, by identifying (13) and (14), it can be deduced im-
mediately that

θi(k+1) = λ k
i θi(1), for k = 1, · · · ,N−1. (18)

Since the Ritz eigenfunctions are not orthonormal, two
oblique projection methods are here proposed to determine
θi(k).

2.3.1 Gramian matrix A first idea is to use the
Gramian matrix G of Φ = (ΦΦΦ1, · · · ,ΦΦΦN−1) whose entries
are given by Gi j = (ΦΦΦi,ΦΦΦ j). Taking the inner product of
(13) with ΦΦΦi, i = 1, · · · ,N− 1, we obtain the linear system
of equations

Gθθθ k = zzzk for k = 1, · · · ,N

where θθθ k = (θ1(k), · · · ,θN−1(k))
T and zzzk =

((ΦΦΦ1,vvvk) , · · · ,(ΦΦΦN−1,vvvk))
T . This relation can be

written in matrix form as

θ = G−1ΦHV N
1 , (19)
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Figure 2. Empirical Ritz values λi.

where θ is the matrix that contains the vectors θθθ k. For using
(19), the matrix G must be well conditioned.

2.3.2 Adjoint basis Another solution is to
search for adjoint modes ΨΨΨ j of ΦΦΦi. Indeed, if the adjoint
modes are know then it is straightforward to determine the
coefficients θ j(k) as

θ j(k) =
N−1

∑
i=1

(
ΨΨΨ j,ΦΦΦi

)
︸ ︷︷ ︸

δi j

θi(k) =
(
ΨΨΨ j,vvvk

)
. (20)

By definition, ΨΨΨi is solution of the adjoint eigenvalue
problem

AHΨΨΨi = λ̄iΨΨΨi. (21)

It can be easily proved that
(

zzzi =
(

V N−1
1

)H
ΨΨΨi, λ̄i

)

are approximated eigen-elements of CH . Since V N−1
1 is in

general a non-square matrix, we can use the SVD decompo-
sition of V N−1

1 (Moore-Penrose pseudoinverse) for finding
that

ΨΨΨi =USVDΣ−1
SVDV H

SVDzzzi. (22)

3 RESULTS
The DMD algorithm has been performed on data ob-

tained by 2D-2C PIV measurements for a turbulent cylinder
wake (Benard et al., 2010) corresponding to a sub-critical
flow regime (ReD = DU∞/νkin = 40000 where D = 40mm
is the cylinder diameter and U∞ = 15.6 m.s−1 is the free-
stream velocity). The database contains Ns = 5130 snap-
shots taken at a sampling frequency fs = 1k Hz over ap-
proximatively 400 periods of vortex shedding. Following
the discussions in section 2.1, the DMD is applied on 128
snapshots (see Fig. 1) without subtracting the mean. Here,
the coefficients ccc were calculated with (17) by inverting the
correlation matrix K.

Figure 2 shows that nearly all the Ritz values are on
the unit circle indicating that the snapshots lie on or near
an attracting set. The growth rate of each DMD mode σi is
plotted versus its frequency ωi in Fig. 3. The spectrum ap-
pears symmetric with respect to the imaginary axis ωi = 0,
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Figure 3. Time-continuous DMD spectrum of the cylinder
wake flow.

which is a consequence of processing real-valued data. In-
deed, in that particular case, the eigenvalues and associ-
ated eigenvectors are real or complex conjugate. At this
point, the Ritz eigenvectors are available for the design of
a reduced-order model. However, it remains to be decided
which of the modes should be included in the reduction ba-
sis. One criterion that should be assessed is based on the
damping rate of the DMD and employs the argument that
modes with large decay rates are dynamically less relevant
than modes that are only weakly damped. Figure 3 sug-
gests that the mean flow and the two first pairs of modes
should be sufficient to obtain a good description of the dy-
namics. The most amplified mode (mode 1) corresponds to
the mean flow. The streamwise Φu

1 and spanwise Φv
1 com-

ponents of ΦΦΦ1 are plotted in Fig. 6. The complex conjugates
modes 11 and 118 oscillate at St = 0.2 (see Fig. 4) which is
precisely the fundamental shedding frequency of the wake
flow. Figure 6 contains also the streamwise and spanwise
components of ΦΦΦ11 and ΦΦΦ25, respectively. The modes 118
and 104 are not represented for symmetry reasons.
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Figure 4. Magnitudes of the DMD modes at each fre-
quency ωi.

Figure 4 represents the amplitude of the DMD modes.
Their amplitudes are not a criterion in itself of the dynamic
relevance of these modes since even a mode with a very
large amplitude can be strongly damped. For instance, the
mode 11 corresponding dynamically to the vortex shedding
(St = 0.2) has relatively low amplitude compared to other
modes.

Concerning the temporal coefficients θi(k) of the Ritz
eigenvectors, they are represented in Fig. 5 for the three
dominant modes: 1, 11, and 25. For symmetry reasons, the
temporal coefficients θ118 and θ104 are again not plotted.
The three methods proposed in section 2.3 to determine the
temporal coefficients, respectively with the Gramian matrix
(19), the adjoint modes (20) and the multiplication of the

Ritz eigenvalues by θi(1) (see Eq. (18)) have been com-
pared and give exactly the same results. The amplitude of
the mean flow is approximatively constant over time. The
oscillatory behaviour of the vortex shedding mode 11 is
well captured and the mode 25 is clearly damped. Knowing
θi(1), it was a posteriori checked that Φ̃ΦΦi = ΦΦΦiθi(1).
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Figure 5. Temporal coefficients of the DMD modes.

In order to assess the possibility of deriving an accurate
reduced-order model based on some DMD modes, differ-
ent reconstructions of the snapshot vvv5 have been performed
(see Fig. 7). Figures 7(c) and 7(d) correspond to the recon-
struction of the streamwise u and spanwise v components
of vvv5 using all the DMD modes. Compared to the original
fields represented in Figs. 7(a) and 7(b), respectively, a very
good agreement is obtained. The error in L2 norm is about
0.07%. If the number of DMD modes kept in the recon-
struction is reduced, the tendency is to describe increasingly
large space scales. When the modes 1, 11, 118, 25 and 104
are used for the reconstruction (Figs. 7(e) and 7(f)), the L2

error is 42.5%. When the modes in the reconstruction are
still reduced to 1, 11 and 118 (Figs. 7(g) and 7(h)), the L2

error decreases up to 40.5%. Due to the non orthogonal-
ity of the DMD modes, the L2 error is not monotonic with
the number of modes as it is the case by definition for the
POD modes. These reduced-order approximations may be
on some circumstances (flow control for instance) sufficient
good approximations of the physical phenomena.

4 CONCLUSION
DMD is a method that is able to extract dynamic infor-

mation from empirical data obtained either numerically or
in experiments. Without explicit knowledge of the underly-
ing dynamical operator, it determines growth rates, frequen-
cies and spatial structures of an approximate linear model.
These modes can be viewed as a generalization of global
stability modes obtained for a linearized system. The DMD
algorithm was presented in details. Lastly, it was shown
that a reduced-order model based on the three most unsta-
ble pairs of DMD modes can reproduce qualitatively well
the original dynamics.
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Figure 6. DMD modes 1, 11 et 25.
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