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ABSTRACT
Whilst Local Isotropy (LI) is widely used, it is also

necessary to test its validity, especially in shear flows, char-
acterized by large-scale anisotropy. Important questions are
whether the small scales are isotropic and how their proper-
ties depend on large-scale parameters (mean shear, the shear
induced by a coherent motion, the Reynolds number etc.).
We focus on two families of LI tests:

i) classical, kinematic tests, in which time-averages are
compared to their isotropic values. The large-scale parame-
ters do not appear explicitly. We only use here one example
of such tests.

ii) Phenomenological tests, which explicitly account
for the large-scale strain, as well as its associated dynamics.
In flows populated by coherent motions in which phase-
averages are pertinent for describing the flow dynamics, we
propose a Local Isotropy (LI) criterion based on the inten-
sity of the turbulent strain rate at a given scale~r and a par-
ticular phase φ , sφ (~r,φ). The formulation is the following:
”If LI were to be valid at a vectorial scale~r and a phase φ ,
then the intensity of the turbulent strain rate sφ (~r,φ) should
prevail over the combined effect of the mean shear S and
of the shear S̃ associated with the coherent motion”. The
mathematical expression of sφ (~r,φ) depends on the Lapla-
cian of the total kinetic energy second-order structure func-
tion. Therefore, the proposed expression allows the even-
tual anisotropy to be taken into account. The new LI cri-
terion is used together with data taken in the intermediate
wake behind a circular cylinder. It is highlighted that (i)
when S+ S̃ is important, LI only holds for scales smaller
than the Taylor microscale (ii) when S+ S̃ is small, the do-
main in which LI is valid extends up to the largest scales.

INTRODUCTION
Local isotropy (LI) is seemingly one of the most im-

portant hypotheses on small-scale statistics. LI was first
enunciated by Kolmogorov (1941), and further utilized and
sometimes tested, in most of the laboratory flows. From the
analytical viewpoint, LI leads to simplified expressions of
e.g. the total kinetic energy, the dissipation rate of kinetic
energy or scalar variance, structure functions at a given
scale. Simple expressions of statistics are useful for the ex-
perimentalists, because of the limited possibilities to mea-

sure all the velocity components, as well as their spatial dis-
tribution.

Although LI is extensively used, it is nonetheless nec-
essary to test its validity, especially in shear flows, char-
acterized by large-scale anisotropy. Important questions
are whether the small scales are isotropic and if there is a
clear dependence of their statistics on large-scale parame-
ters (mean shear S, the shear induced by a coherent motion
S̃, the Reynolds number etc.).

Using a compilation of experimental and numerical
data, Schumacher et al. (2003) showed that LI prevails for
small values of the ratio S/Rλ (Rλ is the Taylor microscale
Reynolds number). One should expect that the magnitude
of the shear will play some role in determining how high
an Rλ is required for LI to prevail. Whereas the conclusion
of Schumacher et al. (2003) is optimistic quid the restora-
tion of LI, the analytical study of Durbin & Speziale (1991)
demonstrated that small scales cannot be isotropic in shear
flows, independently of the values of Rλ and S. From a
general viewpoint, the assessment of LI can only be done
through specific criteria and a definitive conclusion about
the validity of LI is unlikely to be realistic.

The aim of this study is to understand how, in the con-
text of shear flows, the anisotropy propagates across the
scales from the largest to the smallest, how it evolves down
the scales and finally, what the degree of anisotropy is at any
given scale. To this end, we propose a phenomenological LI
criterion based on the intensity of the turbulent strain rate at
a given scale r.

As a first step in answering the question of what the
isotropy level is at any particular scale, we consider flows
populated by a single-scale, persistent coherent motion
(hereafter, CM). A good candidate is the cylinder wake flow,
and this study focuses entirely on this flow. The other ad-
vantage of investigating the wake flow is that it allows to
invoke phase averages. The latter operation results in a de-
pendence of any statistical quantities on the phase φ char-
acterizing the temporal dynamics of the CM.

We focus on two families of LI tests:
i) classical, kinematic tests, in which time-averages are
compared to their isotropic values. The large-scale param-
eters (shear) does not appear explicitly. We only use here
one example of such tests.
ii) Phenomenological tests, which explicitly account for the
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large-scale strain rate, as well as its associated dynamics.

PHENOMENOLOGICAL LI TESTS. ANALYTI-
CAL CONSIDERATIONS

The formulation of the LI criterion is the following
(Thiesset et al. (2013)): ”For LI to be valid at a vectorial
scale~r and a phase φ , then the intensity of the strain rate at
that scale due to any larger scale must be much larger than
the combined effect of the mean shear S and of S̃, the shear
associated with the coherent motion”. Identically and in the
spirit of Corrsin (1958), LI requires the time scale associ-
ated with sφ to be smaller than that due to the sum S+ S̃.

Mathematically, this can be expressed in terms of the
following inequality

sφ (~r,φ)� S̃φ , (1)

with

S̃φ = |〈S〉| , (2)

where 〈.〉 denotes phase averaging, |〈S〉| =
∣∣∣S+ S̃

∣∣∣ is the
absolute value of the phase averaged strain rate S =
1
2

(
∂Ui
∂x j

+
∂U j
∂xi

)
and sφ (~r,φ) is the phase-averaged strain in-

tensity at the scale ~r and the phase φ . Repeated indices
indicate summation.

By integrating over all values of φ , the classical time
averaged quantities are obtained (here denoted by overbars).
Under these conditions, the latter inequality reads

s(~r)� S̃t , (3)

where s(~r) is the time-averaged strain intensity at the scale

~r, and St = S̃φ .
The next step is to propose adequate expressions for

the turbulent strain rate s(~r) and sφ (~r,φ). Starting from the
definition of the strain tensor Σ = ∇~x~u, we need to further
define the tensor S Σ characterizing the strain at a scale ~r
associated with all the larger scales (Mouri & Hori (2010),
Danaila et al. (2012)), i.e. the quantity S Σ(~r) ≡ ∇~x+~u++
∇~x~u, with~x+ =~x+~r. By considering the two frames to be
independent (Monin & Yaglom (2007)), with ~U identical in
the two frames and by invoking the same decomposition as
proposed by e.g. Hill (2002) the final result is

S Σ(~r) = ∇~r∆~u. (4)

Therefore, as far as the turbulent field is concerned, the tur-
bulent strain intensity, which is the norm of S Σ, may be
defined as follows

s(~r) = (∇~r∆~u)21/2
. (5)

After some calculations and by supposing that

∆u j
∂ 2

∂ r2
k
∆u j ≈ 0 (which is strictly true for ~r → 0), the

Figure 1. Sketch of the experimental apparatus.

final expression of s(~r) for turbulent flows in which
time-averages are adequate, is the following

s(~r) =
(

1
2
L (∆ui)2

)1/2
(~r), (6)

where L represents the Laplacian operator. In flows popu-
lated by CM, in which phase-averages are more useful, the
intensity of the strain depends on both ~r and the phase φ ,
and it reads (Thiesset et al. (2013))

sφ (~r,φ) =
(

1
2
L
〈
(∆ui)

2
〉)1/2

(~r,φ). (7)

Calculating the Laplacian of these functions requires esti-
mates of the velocity field in several planes, such as pro-
vided by PIV (Particle Image Velocimetry), or, preferably,
numerical simulations.

It is important to note that, for LI, the Laplacian can be
expressed in spherical coordinates as follows

sφ (r,φ) =
(

1
r

∂
∂ r

〈
(∆ui)

2
〉
+

1
2

∂ 2

∂ r2

〈
(∆ui)

2
〉)1/2

(r,φ).

(8)
The first term on the right side of Eq. (8) has already been
proposed by Danaila et al. (2012). This expression will be
used later in this paper in order to infer sφ and investigate
phenomenological LI tests involving phase averages.

EXPERIMENTS
Measurements were performed at the CORIA, Univer-

sity of Rouen, in a circular cylinder wake. The wind tun-
nel is of the recirculating type with a residual turbulence
level smaller than 0.2 %. The test section is 0.4× 0.4
m2 and 2.5m long and the mean pressure gradient was ad-
justed to zero. The circular cylinder of diameter d = 10mm
was placed horizontally, downstream the contraction, span-
ning the whole test section. The upstream velocity was
U0 = 6.5m.s−1 corresponding to a Reynolds number based
on the cylinder diameter of 4333 and a Taylor microscale
Reynolds number of Rλ ≡ u′λu

ν = 70. Here, u′ is the root
mean squared of the longitudinal velocity component u, λu
is the Taylor microscale and ν is the kinematic viscosity of
the air. Measurements were made at 70d downstream of the
cylinder and for transverse positions varying between y = 0
and y = 5d (Fig. 1).

Only the streamwise and the transverse velocity com-
ponent u and v were measured. The X-wire probe (Dantec
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55P51) was calibrated using a look-up table technique, with
velocity increments of 1 m/s and angle increments of 50.
The hot wires were operated by a Dantec constant temper-
ature bridge, with an overheat ratio of 0.6. Voltage signals
were passed through gain circuits (SRS SIM983) and low
pass filtered (SRS SIM965) at a frequency close to the Kol-
mogorov frequency. The air temperature in the wind tunnel
is kept constant during calibration and measurements, thus
avoiding any systematic errors which may arise from slight
variations in the mean temperature on the output character-
istics of the hot wires.

Phase-averaged statistics are obtained as follows. The
transverse velocity component v is first digitally band-pass
filtered at the frequency corresponding to the peak in the v
spectrum, using an eighth-order Butterworth filter. The fil-
tering operation is applied to the Fourier transform of v in
order to avoid any phase shift. Then, the Hilbert transform
h of the filtered signal v f is obtained and the phase φ in-

ferred from the relation φ = arctan
(

h
v f

)
. Finally, the phase

is divided into 41 segments and phase-averaged statistics
are calculated for each class. The convergence of statistics
was checked, by reducing the number of classes, and found
to be satisfactory. By means of our method, phase-averaged
quantities are calculated over the period [−π,π]. As was
done by O’Neil & Meneveau (1997), the phase is doubled
up to [−2π,2π] thanks to the periodicity, in order to en-
hance the visual display.

In Hill (2001), the geometrical space (location~x in the
flow) and the separation space (turbulent scales~r) are made
independent by considering the geometrical location spec-
ified by the midpoint ~X = 1

2

(
~x+ ~x+

)
. The same idea is

applied here to phase-conditioned structure functions for
which the phase φ is defined as the phase at the mid-
point φ = φ(~X). Therefore, each velocity component is
decomposed into a triple contribution from the mean tem-
poral average, the phase-averaged fluctuation and the ran-
dom/turbulent fluctuation.

RESULTS IN THE WAKE FLOW
One-point statistics

One of the main advantages of using phase averages is
that the temporal dynamics associated with the presence of
the CM is highlighted. As far as the wake flow is concerned,
one generally displays statistics in the (φ ,y) plane to relate
the spatial organization of the kinetic energy with that of the
coherent structures. Here, we focus particularly on the co-
herent strain. The maxima of the total strain rate are noted
at phases which are −π/2+ 2nπ (n is a positive integer),
corresponding to the position of the saddle points (Fig. 2).
Also illustrated in the same figure are the streamlines of the
coherent vortices. The most visible are two of them, rotat-
ing clockwise (the upper stream moves from left to right).
The centres of these vortices are located at y/d ≈ 1.4 and
phases φ = −3π/2± 2nπ and correspond to the minimum
total strain 〈S〉. Note that on the wake centerline, the peri-
odicity of the total strain rate is π , whereas it is 2π out of
the centerline.

Phase-averaging inescapably leads to a dependence on
the phase φ , and eventually on the scale r of the flow, as is
the case for structure functions at any order.

φ(π)

y
/
d

S̃ + S
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Figure 2. The total strain rate 〈S〉d/U0 as a function of the
phase φ and the vertical position in the wake, y/d.

Two-point statistics
Figure 3 represents the phase-averaged second-order

structure functions for v normalized by its variance,
〈(∆v)2〉/v2, as a function of the scale r/λu and the phase
φ(π) of the coherent motion.

φ
(π
)

〈(∆v)2〉
/
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Figure 3. Values of 〈(∆v)2〉(r,φ)/v2 as a function of r/λu

and the phase φ(π) at y = 0d and Rλ ' 70.

The values of the scale-phase second-order structure
functions progressively increase as r keeps increasing, and
reach a maximum for r/λu≈ 9 (this scale is equal to half the
distance between two successive vortices), followed first by
a slight decrease and then by a quasi-periodic behaviour for
the largest scales. The maxima of 〈(∆v)2〉(r,φ)/v2 occur at
scales which are multiples of the first maximum. The trend
of 〈(∆v)2〉(r,φ)/v2 is uniform in φ for small scales, consis-
tent with the fact that these scales are not influenced by the
coherent motion. At larger scales, where the CM is present,
there is a hint of periodicity along the φ axis (for r/λu ≈ 2),
followed by a clear periodicity at scales r/λu≈ 9, as empha-
sised earlier. At these scales, turbulent fluctuations diminish
and the CM is predominant.

The dynamical aspect of 〈(∆v)2〉(r,φ) should be un-
derstood in association with the phase variations of the total
strain rate, Fig. 2. A careful analysis of this figure reveals
that the maxima of 〈(∆v)2〉(r,φ)/〈v2〉 occur at the same
phases as the extrema of the total strain rate S+ S̃ (i.e. odd
multiples of π/2).
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Local Isotropy criterion
LI is first assessed from a kinematic LI test relating

phase-conditioned second-order structure functions. In this
context, the isotropic relation between second-order struc-
ture functions of the longitudinal velocity components and
those of the transverse velocity components may be written
as

〈
(∆u⊥)

2
〉

iso
(r,φ) =

(
1+

r
2

∂
∂ r

)〈
(∆u)2

〉
(r,φ). (9)

Note the analogy between (9) and its time-averaged coun-
terpart

(∆u⊥)2
iso(r) =

(
1+

r
2

∂
∂ r

)
(∆u)2, (10)

It is obvious that such a criterion for LI at each phase of the
motion is much more constraining than its time-averaged
counterpart, Eq. (10).

We present results for the ratio〈
(∆u⊥)2〉

iso (r,φ)/
〈
(∆u⊥)2〉(r,φ), where

〈
(∆u⊥)2〉

iso is
given by relation (9). This ratio is illustrated in Fig. 4 on
the wake centerline.

The most important remark concerns the positions
at which the maximum departure of the ratio from the
isotropic value of 1 is observed. There are points for which
the value of

〈
(∆v)2〉

iso (r,φ)/
〈
(∆v)2〉(r,φ) is 0.8. This oc-

curs at phases which are odd multiples of π/2, for which
the absolute value of the total strain rate is maximal, and
with scales as large as ≈ 8λu. Therefore, by considering
the phase-conditioned LI test Eq. (9), the relation between
anisotropy and the coherent strain can be emphasized.

r/λu

φ
(π
)

〈(∆v)2〉|iso
/
〈(∆v)2〉(y = 0d)
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Figure 4. The dependence of〈
(∆v)2〉

iso (r,φ)/
〈
(∆v)2〉(r,φ) on r/λu and φ(π) at

y/d = 0 and Rλ ' 70. The red line depicts the scale L−1,
representative for the phenomenological LI criterion.

We now turn our attention to the phenomenological
LI criterion proposed in this study and thus sφ (r,φ) �
S̃φ (φ) is tested against experimental data. Figure 5 de-
picts log10(S̃φ/sφ ) as functions of r/λu and the phase φ/π
at a spatial location y/d = 0 at the centerline. A pos-
sible statement of the LI criterion is ’LI should hold if
log10(S̃φ/sφ ) ≤ −1’. Small values of log10(S̃φ/sφ ) occur
for small scales, whereas large values (much larger than
10−1), as highlighted by white regions, are found mostly

at large scales. The curve for which log10(S̃φ/sφ ) = −1,
i.e. ’L−1’, is represented by dotted lines. This curve sep-
arates the region of small values of r (for which LI holds),
from the region of large anisotropic scales. As emphasised
by this figure, L−1 varies between 0.8λu and 8λu. The phase
for which L−1 is minimum is fully correlated with the ex-
tremum values of the coherent strain rate S̃φ (Fig. 2) and
of the maximum of anisotropy. At the phases for which
S̃φ = 0, the influence of the coherent motion is absent, so
that LI becomes more noticeable and L−1 can increase.
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log10 (〈S〉 /sφ) (y = 0d)
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Figure 5. Values of log10(S̃φ/sφ ) as functions of r/λu and
the phase φ/π , at y/d = 0. The red line represents the scale
L−1.

The second similarity hypothesis reads

〈
(∆ui)

2
〉

∝ r2/3 〈ε〉2/3 , (11)

so that the strain rate at a given scale which lies in the iner-
tial range

s(r,φ) ∝ r−2/3 〈ε〉1/3 (12)

which is simply the inverse of the Kolmogorov time scale
extended to the inertial range. From Eq. (12) yields an
analytical expression for L−1

L−1(φ) ∝

√
〈ε〉
|〈S〉|3

(13)

This expression for L−1 is the generalization of the
anisotropic scale originally proposed by Corrsin (1958) in
which the phase dependence of the coherent motion is ex-
plicitly accounted for.

RESULTS IN PRESENCE OF A MEAN SHEAR
We now focus on the sheared region of the flow where

the mean shear is not negligible.
Figure 6 represents the phase-averaged second-order

structure functions for v normalized by its variance,
〈(∆v)2〉/v2, as a function of the scale r/λu and the phase
φ(π) of the coherent motion, at y/d = 1.3. The behaviour
of 〈(∆v)2〉/v2 at y/d = 1.3 is very similar to that on the
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Figure 6. Values of 〈(∆v)2〉(r,φ)/v2 as a function of r/λu

and the phase φ(π) at y = 1.3d and Rλu
' 70.
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Figure 7. The dependence of〈
(∆v)2〉

iso (r,φ)/
〈
(∆v)2〉(r,φ) on r/λu and φ(π) at

y/d = 1.3 and Rλ ' 70. The red line represents the scale
L−1.

wake centreline. As it was previously noted (Fig. 3), these
maxima of

〈
(∆v)2〉(r,φ)/v2 occur at phases for which S̃ is

extremum, and for r/λu ≈ 9. It is worth noting that away
from the centreline, the periodicity of these regions is not
π , but rather 2π (a complete period of the coherent mo-
tion). This behaviour is associated with the fact that for e.g.
φ(π) = 0.5, S̃ < 0 (see Fig. 2), the total strain rate S+ S̃
is smaller than S, and for these phases, the local strain rate
is diminished. On the contrary, at φ(π) =−0.5 (and multi-
ples), S̃ > 0 (see Fig. 2), the total strain S+ S̃ is larger than
S, and at these phase locations, the local strain is enhanced.
For phases associated with S̃ > 0, therefore with a maximal
total strain rate, the increase of the ratio

〈
(∆v)2〉(r,φ)/v2

towards the maximum value of 2.5 is more important and
starts at smaller scales (r/λu ≈ 3) than for phases where
S̃ < 0.

Also presented are results for a LI test from a dynami-
cal viewpoint, i.e. the ratio

〈
(∆v)2〉

iso /
〈
(∆v)2〉. This ratio

is illustrated in Fig. 7 at y/d = 1.3. If LI holds at a scale
r and a phase φ , then the ratio

〈
(∆v)2〉

iso /
〈
(∆v)2〉 should

be equal to 1. The maximum departure of the ratio from the
isotropic value of 1 is associated with phases which are odd
multiples of π/2, for which the absolute value of the total
strain rate is maximal, and with scales as large as ≈ 20λu.
At these scales, the value of

〈
(∆v)2〉

iso /
〈
(∆v)2〉 is 1.3.

Figure 8 depicts log10(S̃φ/sφ ) as functions of r/λu and
the phase φ/π , at a spatial location y/d = 1.3 away from the
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log10 (〈S〉 /sφ) (y = 1.3d)
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Figure 8. Values of log10(S̃φ/sφ ) as functions of r/λu and
the phase φ/π , at y/d = 1.3. The red line represents the
scale L−1.

centerline. Again, a possible statement of the LI criterion is
’LI should hold if log10(S̃φ/sφ )≤−1’. As in the case of re-
sults previously presented at the wake centerline, small val-
ues of log10(S̃φ/sφ ) occur for small scales, whereas large
values (much larger than −1) are found mostly at large
scales. The curve for which log10(S̃φ/sφ ) =−1, i.e. ’L−1’,
is represented by red line. This curve separates the region of
small values of r (for which LI holds), from the region with
large anisotropic scales. As emphasised by this figure, L−1
varies between 0.8λu and 8λu. Its magnitude is smaller than
at the wake centerline, where the mean shear is absent. The
phase for which L−1 is minimum is fully correlated with the
extremum values of the coherent strain rate S̃φ (Fig. 2). At
the phases for which S̃φ = 0, the influence of the coherent
motion is absent, so that LI becomes more noticeable and
L−1 can increase.

EFFECT OF REYNOLDS NUMBER AND PER-
SISTING EFFECTS IN THE FAR FIELD

It can be interesting to assess the degree at which LI
will be satisfied in the context of large Reynolds numbers
shear flows. From Eq. (12), we obtain at an arbitrary scale
r

s(r)/
〈
S̃
〉

∝ R0
λ . (14)

Therefore, the amplitude of the turbulent strain rate in the
inertial range increases at the same rate as the total strain
rate S+ S̃ with respect to the Reynolds number, their ratio
is thus constant. Nevertheless, from the expression of L−1
we expect that

L−1/λu ∝ Re1/2
d ∝ Rλ , (15)

where Red is the Reynolds number based on the local mean
velocity defect and the cylinder diameter. In other words,
the range of scales over which LI is satisfied progressively
extends as the Reynolds number increases. The particular
scale at which LI is expected to be observed depends on the
magnitude of the coherent shear.

We now turn our attention to some possible persisting
effect of local anisotropy in the far self similar region of
the flow. Given U and L the similarity scales for which
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U ∝ x−1/2 and L ∝ x1/2 the scaling of the turbulent strain
rate is as follows

s(r) ∝ U /L ∝ x−1. (16)

For the sake of simplicity, the latter expressions do not con-
sider explicitly the dependence on the virtual origin, x0.
This simply signifies that the turbulent strain rate acting at
a given scale and the coherent strain rate decays at the same
rate. Second, since

〈ε〉 ∝ U 3/L ∝ x−2, (17)

〈λu〉 ∝ L ∝ x1/2, (18)

the anisotropic scale

LS̃/λu ∝ x0. (19)

It is thus shown that from an initial anisotropic condition at
the beginning of the self-similar region, the latter anisotropy
persists independently of the downstream distance x. The
degree of anisotropy depends on S+ S̃ and therefore on ini-
tial conditions. Our results also support the proposition of
George (1989) that there is no universal self-similarity but
only local self-similarity conditioned by the topology and
amplitude of the organized motion associated with each set
of initial conditions.

CONCLUSIONS
An original LI test based on the ratio between the in-

tensity of the turbulent strain rate and that due to the com-
bined effect of the mean and coherent strain rates is pro-
posed. This test is phenomenological and thus has an ex-
plicit dependence on the total large scale strain rate which
induces anisotropy.

It has been shown that (i) when S̃φ is important, LI only
holds for scales smaller than the Taylor microscale (ii) when
S̃φ is small, the domain in which LI is valid extends up to
the largest scales.

The analytical tool we have developed opens perspec-
tives for a better understanding of the validity of LI in both

decaying and shear flows, as a function of the dynamical
behavior of large-scale statistics.

RAA acknowledges the support of the Australian Re-
search Council. The financial support of the French Na-
tional Research Agency (ANR) is gratefully acknowledged.
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