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ABSTRACT
Large eddy simulation is used to numerically simulate

flow past a heated sphere at Re=10,000. A second order
accurate in space and time, semi-implicit finite difference
code is used with the immersed boundary to represent the
sphere in a Cartesian domain. Visualizations of the vortic-
ity field and temperature field are provided together with
profiles of the temperature and velocity fields at various
locations in the wake. The laminar separated shear layer
was found to efficiently transport temperature from the hot
sphere surface to the cold fluid in the wake. Pronounced
Kelvin-Helmholtz induced rollers are formed which desta-
bilize the separated shear layer and promote mixing. Cal-
culations of the wake dimensions showed that the wake di-
mensions of the velocity field and the temperature field dif-
fer by 10% in the developed region behind the re-circulating
region.

Introduction
Scalar mixing is important for a large number of prac-

tical situations from industrial applications to the detec-
tion of underwater vehicles to mixing and transfer of en-
ergy and contaminants in the ocean and atmosphere and
others as noted by Berajeklian & Mydlarski (2011). De-
spite the practical importance of this flow, the literature for
scalar mixing in the wake of three-dimensional bluff bod-
ies is rather limited. Significantly more work has been done
for the case of a cylinder wake, see for example Berajek-
lian & Mydlarski (2011), Matsumura & Antonia (1993) and
references therein. Here we will discuss the relevant litera-
ture on three-dimensional bluff-bodies. Gibson et al. (1968)
performed the first study of scalar mixing in the wake of
a sphere by performing water tunnel measurements. The
scalar field was added by a jet of hot water from the back
of the sphere into the re-circulating region. They measured
and obtained power law fits for the decay of the mean tem-
perature, temperature variance, and scalar dissipation in the
region 3 < x/D < 60. In wind-tunnel experiments with an
optically heated sphere at Re = 4,300, Freymuth & Uberoi
(1973) observed self-similarity of the mean temperature and
temperature variance for x/D > 80. The temperature ex-
cess was found to scale as T ∼ x−2/3 and the length scale
as lT ∼ x1/3. They also quantified the terms of the scalar
variance budget where they observed strong convection and
dissipation. They also observed self-similarity in one di-
mensional temperature spectra and the presence of a k−5/3

region with an increasingly large inertial range as Reynolds
number increases. The very late wake of a heated sphere
and the transition to the final decay period of turbulence was
considered experimentally by Freymuth (1975) and theoret-
ically by Freymuth (1976).

In wind-tunnel studies with a 6:1 ellipsoid with a hot jet
of air emitted from the back of the body, Dmitrenko et al.
(1986a) measured the relationship between the mean and
fluctuating velocity and temperature fields in the wake. The
data from Dmitrenko et al. (1986a) was used by Dmitrenko
et al. (1986b) to measure cross-correlations of the veloc-
ity and temperature fluctuations as well as the terms in the
temperature variance balance equation. Important results
from these studies include: the thermal field has a finer scale
than the velocity field, the mean temperature reaches self-
similarity before the temperature fluctuations, the growth
rate of the thermal wake width appears to be universal for
axisymmetric bodies, temperature fluctuations increase as
velocity fluctuations decrease and vice-versa. Dmitrenko
et al. (1986a) found that the ratio of length scales between
the velocity and temperature field was constant for both
mean and fluctuating profiles for the entire wake evolution
despite the thermal wake not exhibiting self-similarity.

Results from studies of scalar mixing in the wake of
axisymmetric bodies are not universal. One of the principal
results of Dmitrenko et al. (1986b) is that the shape of the
body significantly affects the physical processes governing
the evolution of scalar variance. Also, Berajeklian & Myd-
larski (2011) showed that even for the same velocity field,
flow statistics are sensitive to the method of scalar injection.

Formulation
We consider spatially-evolving flow past a stationary

heated sphere in a fixed computational domain. The sphere
is weakly heated so that temperature can be treated as a pas-
sive scalar. Our setup is the computational equivalent to
a wind tunnel where undisturbed inflow enters the compu-
tational domain and flow exits through an outflow bound-
ary. Suitable far-field boundary conditions are applied in
the cross-stream directions to prevent blockage and end ef-
fects from contaminating the simulation.

High resolution LES is used to simulate the three-
dimensional, unsteady, incompressible, Navier-Stokes
equations subject to the Boussinesq approximation. For the
LES, a standard Smagorinsky model is used for the sub-grid
scale stress and buoyancy flux. As was done by Schmid
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Table 1: Grid parameters. Here Li represents the grid
length in a given direction and ni the number of grid
points in the given direction. Note that the domain
length given here does not include the additional size
of the sponge region.

L1 L2 L3 n1 n2 n3

21.00 10.64 10.64 1024 576 576

& Peric (2001), a Smagorinsky coefficient of 0.1 was se-
lected for this study. The governing equations are solved on
a Cartesian grid with the immersed boundary method used
to represent the sphere inside the domain. A Cartesian grid
was chosen as we are more interested in the wake dynam-
ics than in the near sphere flow field; such an approach was
used by Parnaudeau et al. (2008) for flow past a cylinder.
The grid used is a tensor product of three one-dimensional
grids; grid stretching is used in all directions to concentrate
points on the sphere to resolve the laminar boundary layer
and to capture the details of the separated laminar shear lay-
ers.

The numerical method used is a semi-implicit com-
bination of third order Runge-Kutta (RK3) for convective
terms and second order alternating direction implicit (ADI)
with a pressure correction algorithm for the viscous and
pressure gradient terms. Second order centered differences
are used for all spatial derivatives. The method is a com-
bination of the low-storage RK3 method of Williamson
(1980), with the unconditionally stable ADI method of
Douglas (1962), and the pressure correction algorithms of
Zang et al. (1994) and Rhie & Chow (1983). A flexible
semi-coarsened multigrid solver is used for the pressure
projection. Grid stretching in all 3 directions requires the
use of a more robust multigrid solver able to handle differ-
ent levels of anisotropy throughout the computational do-
main, a modification of the method of Piquet & Vasseur
(2000) is employed. Lines are performed in the stream-
wise direction and coarsening is performed in the other
two directions. Unlike Piquet & Vasseur (2000) who use a
Galerkin coarse grid approximation, here we apply a direct
coarse grid approximation. A pipelined Thomas algorithm
is used to efficiently solve the tridiagonal system of equa-
tions generated by ADI.

The direct forcing immersed boundary method of Ro-
man et al. (2009) is used. This implementation decouples
fluid and solid nodes, allows for a sharp interface at the
boundary and requires only a single solution of the momen-
tum equation at each substep.

Simulation parameters
Simulations are performed at a Reynolds number of

10,000 and a Prandtl number of 1. For this study, all values
given are provided in their normalized form where normal-
ization uses the sphere diameter D, the free stream veloc-
ity U∞, and the initial temperature difference between the
sphere and the background ∆T0. The computational grid
details are given in Table 1. The center of the sphere is
located at [0,0,0] with the inflow boundary at x1 =−5.0D.
A fixed timestep of ∆t = 0.00275 is used; this value corre-
sponds to a CFL number slightly less than 1. A sub-grid
scale Prandtl number of 1 was chosen so that κsgs = νsgs.

Stress-free boundary conditions are applied at the top,
bottom and side boundaries. Uniform undisturbed inflow is
applied at the inlet and linear extrapolation together with a
sponge region are applied at the outflow boundary to allow
flow to smoothly transition out of the domain. A no-slip
boundary condition is applied for the velocity at the sphere
and the temperature at the sphere boundary is fixed at a con-
stant value, ∆T = 1. Data from a simulation of flow past a
sphere at Re = 3,700 is interpolated to the current grid for
use as an initial condition.

18432 CPU hours on 288 processors were required for
this study, see appendix for details of the machine used. Av-
eraging was performed using data from six shedding cycles.

Validation
Validation of the flow is performed with available data

from previous numerical and experimental studies at Re =
10,000 in Table 2. Good agreement is observed in the pro-

Table 2: Comparison of present data with that from
previous numerical and experimental studies of the
wake of a sphere at Re = 10,000. C+S refers to
Constantinescu & Squires (2003); comparable statis-
tics are also provided using DES in Constantinescu &
Squires (2004).

St ψS Cpb Lr/D

Present study 0.185 85-95 -0.262 1.724

Rodriguez et al. (2013) (DNS) 0.195 84.7 -0.272 1.657

Yun et al. (2006) (LES) 0.17 90 -0.274 1.364

C+S (LES) 0.195 84-86 -0.27 1.74

Achenbach (1974) (exp.) 0.148 - - -

Cometta (1957) (exp.) 0.195 - - -

vided statistics, note St is the Strouhal number, ψS is the
separation angle, Cpb is the back pressure coefficient and Lr
is the recirculation length. The mean pressure coefficient
around the sphere was also found to agree well as shown
in Figure 1. Considerable uncertainty was observed in the
separation angle due to the mismatch of the computational
grid and the sphere surface combined with interpolation er-
ror. In addition to reasonable agreement for the shedding
frequency, we also observe a low frequency peak ( f < 0.04,
not enough data was present to determine the value) and a
secondary peak corresponding to Kelvin-Helmholtz shed-
ding as observed by previous studies.

Visualization of the vorticity and temperature
fields

In Figure 2, we illustrate the connection between the
vorticity field and the temperature field in the wake of the
heated sphere. There is good agreement between the behav-
ior of the vorticity and the temperature field. The tempera-
ture value is large in the re-circulating region immediately
behind the sphere as expected. However, we can clearly
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Figure 2: Instantaneous contours of the spanwise vorticity ω2 (left column) and temperature field (right column). (a)
The four images are shown at a time spacing of 1/4 of a shedding period with time increasing from top to bottom.
Note that due to the rapid decay of the temperature, a lower contour limit is chosen to illustrate the temperature
distribution in the wake.

see that fluid is being transported from the sphere surface
to the wake through the separated shear layer. Large val-
ues of both vorticity and temperature are seen in these thin
separated layers. The vortex roll up is evident in the vortic-
ity field and the rollers can be observed in the temperature
field as well. These rollers enhance mixing by entraining
cold fluid into the hot wake region. A secondary peak in
the temperature field can be seen in the region in between
the two shear layers at x/D ≈ 0.8. This secondary peak is
caused by swirling motions in the re-circulating region.

Mean and fluctuating statistics in the wake
Profiles of the mean and fluctuating velocity and tem-

perature field are provided at five locations in the wake
in Figure 3. The thin separated shear layers in the near
wake can be seen in all four images at x1/D = 1.0. By
x1/D = 2.0 the mean streamwise velocity field has transi-
tioned to a Gaussian shape which is retained for the rest of
the flow evolution. The mean temperature field transitions

to a Gaussian profile slightly later in time with evidence of
the presence of the shear layers still retained at x1/D = 2.0.
The rms fields of the streamwise velocity and temperature
are qualitatively similar. Both show a double-humped pro-
file in the early wake before transitioning to what appears
to be more of a flat-topped profile at intermediate time. The
double-humped profile persists further in x1/D for the fluc-
tuating fields than for the mean fields.

Wake dimensions

The size of the wake for the velocity field and the tem-
perature field can be quantified by calculating the wake di-
mensions. The wake dimensions are shown in Figure 4.
Here the second order spatially centered moment definition
of Brucker & Sarkar (2010) is used where the wake length
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Figure 3: Mean and root mean square profiles in the wake. (a) Mean streamwise velocity. (b) RMS streamwise
velocity. (c) Mean temperature. (d) RMS temperature.
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Figure 1: Mean pressure coefficient around the sphere.
Data from the Re = 10,000 DNS of Rodriguez et al.
(2013) is shown for comparison.

scale L f is given by

L2
f (t) = 2

∫
A (xα − xc

α )
2 f 2 dA∫

A f 2 dA
, xc

α (t) =

∫
A xα f 2 dA∫

A f 2 dA
,

(1)

with α representing a given coordinate direction and f rep-
resenting the variable of interest. Note that for the mean
streamwise velocity, the wake dimensions are calculated
based on the wake defect velocity. The wake dimensions
presented here were calculated from the 1D average of the
x1 − x3 and x1 − x2 planes.

For analyzing the wake dimensions we will break the
wake into two pieces. The first is for the re-circulating re-

gion with x1/D < D/2+Lr = 2.224. In this region the ob-
tained wake dimensions are much larger for the mean tem-
perature field than the mean velocity field. This occurs due
to the dominance of the large temperature value in the sepa-
rated shear layer which is located far from the vertical cen-
terline. Similarly to the larger mean temperature value, the
temperature fluctuations are larger in the re-circulating re-
gion than the velocity fluctuations.

The second region occurs after the re-circulating re-
gion, x1/D > 2.224. We will refer to this region as the de-
veloped region. In the developed region, the dimensions
of the temperature and velocity fields are comparable for
both the mean and fluctuating fields. The values for the
temperature and velocity fields differ by 10%. It is interest-
ing to note that the mean velocity field is 10% larger than
the mean temperature field but that the fluctuating temper-
ature field is 10% larger than the fluctuating velocity field.
Dmitrenko et al. (1986a) observed a fixed ratio of 1.2 for
both Lu1,rms/L<u1 > and LTrms/L<T >. Here we observed
that both Lu1,rms/L<u1 > and LTrms/L<T > are approxi-
mately constant in the developed region but the values are
different with Lu1,rms/L<u1 >≈ 1.4 and LTrms/L<T >= 1.63
The growth rate in the developed region was found to be
nearly identical for the mean and fluctuating values at ap-
proximately x1/2. This value is larger than the value of x1/3

expected in the self-similar regime.

Conclusions
To the best of the author’s knowledge, this study is the

first numerical attempt to simulate scalar mixing in the wake
of a sphere with a turbulent wake. Visualizations of the tem-
perature and vorticity field show a link between the coherent
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Figure 4: Wake dimensions based on (a) Mean velocity
and temperature. (b) RMS velocity and temperature.

structures in the velocity field and temperature fluctuations.
The separated shear layer carries large values of the tem-
perature away from the hot sphere and into the cold fluid.
Mixing is enhanced by the Kelvin-Helmholtz shear insta-
bility which causes rollers to form which engulfs cold fluid
into the hot region.

Profiles of the mean and fluctuating fields were pro-
vided at five locations in the wake. These profiles show the
strong role played by the separated shear layer in the near
wake evolution. In particular, large fluctuating values of the
velocity and temperature are found at off center peaks in
the region behind the separated shear layers. The values for
the wake dimensions were found to be within 10% for the
velocity and the temperature field in the developed region
behind the re-circulating region. A constant power law was
obtained for the growth rate with the same value of approx-
imately x1/2 obtained for the mean and fluctuating fields.

Simulations and analysis are currently ongoing. We
plan to report more detailed results in a future publication.

ACKNOWLEDGMENTS
M.B.S. and S.S are pleased to acknowledge the support

of the Office of Naval Research (ONR) Grant No. N0014-
11-10469, program monitor Ron Joslin. M.B.S. also re-
ceived support on this project from an Achievement Re-
wards for College Scientists Scholarship. Computational
resources were provided by the Department of Defense
High Performance Computing Modernization Program. All
simulations were run on Diamond, an SGI Altix ICE 8200
LX at the US Army Corps of Engineers Engineering Re-
search and Development Center.

REFERENCES
Achenbach, Elmar 1974 Vortex shedding from spheres. J.

Fluid Mech. 62 (02), 209–221.
Berajeklian, A. & Mydlarski, L. 2011 Simultaneous

velocity-temperature measurements in the heated wake
of a cylinder with implications for the modeling of tur-
bulent passive scalars. Phys. Fluids 23 (5), 055107.

Brucker, K. A. & Sarkar, S. 2010 A comparative study of
self-propelled and towed wakes in a stratified fluid. J.
Fluid Mech. 652, 373–404.

Cometta, Carl 1957 An investigation of the unsteady flow
pattern in the wake of cylinders and spheres using a hot-
wire probe. PhD thesis, Thesis (Sc.M.)–Brown Univer-
sity., Also cited as Tech. Rep. WT-21.

Constantinescu, George & Squires, Kyle 2004 Numerical
investigations of flow over a sphere in the subcritical and
supercritical regimes. Phys. Fluids 16 (5), 1449–1466.

Constantinescu, G. S. & Squires, K. D. 2003 LES and DES
investigations of turbulent flow over a sphere at Re =
10,000. Flow, Turbulence and Combustion 70, 267–298.

Dmitrenko, Yu.M., Zhdanov, V.L. & Kolovandin, B.A.
1986a Turbulent velocity and temperature fields in the
nonisothermal wake behind an elongated body of revolu-
tion. Journal of engineering physics 50 (1), 9–15.

Dmitrenko, Yu.M., Zhdanov, V.L., Kolovandin, B.A. &
Labuda, I.A. 1986b Temperature fluctuation balance in
an axisymmetric turbulent wake. Journal of engineering
physics 50 (2), 123–128.

Douglas, J. 1962 Alternating direction methods for three
space variables. Numerische Mathematik 4, 41–63.

Freymuth, Peter 1975 Search for the final period of decay
of the axisymmetric turbulent wake. J. Fluid Mech. 68,
813–829.

Freymuth, Peter 1976 Modeling of the final period of decay
for the axisymmetric turbulent temperature wake. Phys.
Fluids 19 (10), 1475–1477.

Freymuth, Peter & Uberoi, Mahinder S. 1973 Temperature
fluctuations in the turbulent wake behind an optically
heated sphere. Phys. Fluids 16 (2), 161–168.

Gibson, C. H., Chen, C. C. & Lin, S. C. 1968 Measurements
of turbulent velocity and temperature fluctuations in the
wake of a sphere. AIAA J. 6 (4), 642–649.

Matsumura, M. & Antonia, R. A. 1993 Momentum and heat
transport in the turbulent intermediate wake of a circular
cylinder. J. Fluid Mech. 250, 651–668.

Parnaudeau, Philippe, Carlier, Johan, Heitz, Dominique &
Lamballais, Eric 2008 Experimental and numerical stud-
ies of the flow over a circular cylinder at Reynolds num-
ber 3900. Phys. Fluids 20 (8), 085101.

Piquet, Jean & Vasseur, Xavier 2000 A nonstandard multi-
grid method with flexible multiple semicoarsening for
the numerical solution of the pressure equation in a
navier-stokes solver. Numerical Algorithms 24, 333–355.

Rhie, C. M. & Chow, W. L. 1983 Numerical study of the
turbulent flow past an airfoil with trailing edge separa-
tion. AIAA J. 21 (11), 1525–1532.

Rodriguez, I., Lehmkuhl, O., Borrell, R. & Oliva, A. 2013
Flow dynamics in the turbulent wake of a sphere at sub-
critical Reynolds numbers. Comput. Fluids 80 (0), 233 –
243.

Roman, F., Napoli, E., Milici, B. & Armenio, V. 2009
An improved immersed boundary method for curvilinear
grids. Comput. Fluids 38 (8), 1510 – 1527.

Schmid, M. & Peric, M. 2001 Large eddy simulation of
subcritical flow around sphere. In High Performance

5



August 28 - 30, 2013 Poitiers, France

WAK1B

Computing in Science and Engineering 2000 (ed. Egon
Krause & Willi Jager), pp. 368–376. Springer Berlin Hei-
delberg.

Williamson, J. H. 1980 Low-storage Runge-Kutta schemes.
J. Comput. Phys. 35, 48–56.

Yun, Giwoong, Kim, Dongjoo & Choi, Haecheon 2006 Vor-
tical structures behind a sphere at subcritical reynolds

numbers. Phys. Fluids 18 (1), 015102.
Zang, Y., Street, R. & Koseff, R. 1994 A non-staggered grid,

fractional step method for time-dependent incompress-
ible Navier-Stokes equations in curvilinear coordinates.
J. Comput. Phys. 114, 18–33.

6


