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ABSTRACT
The shooting method is employed to outline a

structural aspect of phase space of plane Couette
flow, associated with laminar-turbulent transition at
moderate Reynolds numbers (Re ∼ 104). The basin
boundary separating the laminar and the turbulent
attractors in the phase space is emerged out of tra-
jectories starting from initial conditions constituted
by superposition of three distinct exact steady solu-
tions of PCF, including the Hairpin Vortex Solution
(Itano & Generalis (2009); Gibson et al. (2009)) and
the so-called Nagata’s solution (Nagata (1990)). The
result implies that HVS is on the basin boundary even
at moderate Reynolds numbers, and that one of the
unstable manifolds of HVS heads towards the NBW,
which lies on the basin boundary.

INTRODUCTION
Hairpin vortex structure has been known as one

of predominant vortex structures in turbulent shear
flows. A candidate of corresponding exact solution,
Hairpin Vortex Solution (HVS) of plane Couette flow
(PCF), was solved at Re ∼ 200 recently by Itano &
Generalis (2009), Gibson et al. (2009). The solu-
tion is composed of the upper and lower branches
arising from a saddle-node bifurcation at the turning
point Re = 139.2, where Reynolds number is defined
as Re = Uh/ν in terms of the kinematic viscosity ν,
the channel half width h, and the moving-wall ve-
locity ±U . By contrast, the so-called Nagata’s solu-

tion of PCF (hereafter we used the acronym “NBW”
formed from discoverers, Nagata (1990); Clever &
Busse (1997); Waleffe (1998)) is bifurcated from the
lower Reynolds number, Re = 127.7, in spite the fact
that NBW is a derivative rather than the counterpart
of the HVS.

The upper branch of the HVS contains vortex
structures with the shape of a hairpin observed ubiq-
uitously in turbulent shear flows, satisfying the reflec-
tion symmetry in the spanwise direction. At a couple
of legs of a vortex structure, the localised vorticity lift
up the fluid near the boundary so as to form a couple
of streaky regions near the boundary, and the head
of the vortex structure induces coalescence of these
streak structures, which is visualised as a bulge be-
neath the head of the vortex structure at Re ≤ 300.
Though the solution is steady, nevertheless drastic
change of topology of the velocity field with increase
of Re (Re > 400) gives rise to fully complicated de-
formation of streaky structures, which leads to en-
hancement of the fluid mixing between the bound-
aries. While the upper branch of HVS has recently
attracted researcher’s interest due to such a charac-
terisation of its spatial structure (Generalis & Itano
(2010), Deguchi & Nagata (2010)), the lower branch
of HVS has been left out of the analysis of the HVS
solutions.

Wang et al. (2007) verified numerically that the
lower branch of NBW exists on the basin bound-
ary (BB) of PCF, which is the boundary with
codimension-1 separating the laminar and the tur-
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bulent attractors (basins) of PCF. They argued that
the lower branch of NBW has the only unstable man-
ifold, which escapes from the BB, and that it is an
attractor of the dynamical system restricted on the
BB at high Reynolds numbers. On the other hand,
it remains open to verify whether the more primitive
exact solution, HVS, satisfies the same condition. In
the present study, focusing on the lower branch of the
HVS, we will reveal its significance in PCF at mod-
erate Reynolds number (Re ∼ 104). To put it con-
cretely, employing the shooting method, which was
established originally as a tool in order to find out
an unstable steady solution of subcritical shear flows
(Itano & Toh (2001)), we will outline a structural as-
pect of phase space associated with laminar-turbulent
transition, that is, the relation of the lower branch of
HVS and the BB of PCF at moderate Reynolds num-
bers. The numerical result obtained by the shoot-
ing method suggests that HVS remains on the BB at
moderate Reynolds number, and moreover that one
of the unstable manifolds of HVS connects to NBW,
which lies on the BB.

COMPUTATIONAL METHOD
A canonical turbulent shear flow, PCF, has two

attractors in the phase space corresponding to the
laminar and the turbulent states, both of which are
kept to be attractors even in high Reynolds numbers,
which is partly proven by the linear stability analy-
sis. In general, such a bistable system as PCF, the BB
(boundary of basin of attraction) can be defined. The
BB is a singular set consisting of the (unstable) points
in phase space which are initial conditions falling into
neither of these attractors within the infinite time in-
terval. Therefore, it requires a formidable task to
fully identify the BB. On the other hand, the BB is
a key to understand the laminar-turbulent transition,
as it is the theoretically exact criterion to predict the
critical perturbation arising transition.

By the following procedure in case that a few as-
sumptions are satisfied, the BB may emerge partly
in the phase space. Suppose that a distance between
two states in phase space is well defined, and also
that the time interval which it takes for a state start-
ing from an arbitrary initial condition to approach to
either of these attractors is certainly shorter than an
sufficiently long characteristic time interval, T . Then,
the BB is numerically identified just as an assembly
of the initial conditions which approach neither to the
laminar state nor to the turbulent state in T . If we
refer to a state of flow at the time t as u(t), which is
governed by du

dt = F (u,t), then

|u(t)−uL| > δL and |u(t)−uT| > δT for 0 ≤ t < T

→ u(0) on BB

under a given finite distance δi > 0 for each attrac-
tor ui, where the index i indicates either the laminar
(L) or the turbulent (T) states. To figure out com-
pletely the BB of PCF even based on the above def-
inition requires to solve trajectories starting from an
infinite number of initial conditions in infinite dimen-
sional phase space under the full nonlinear governing
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Figure 1. Trajectories starting around uH separates

towards either towards the laminar (dotted) or the

turbulent (solid) states due to a little additive per-

turbation to the initial state, where the additive per-

turbation satisfies the reflection symmetry the HVS

does. E(t) is the half of norm of the wall-normal

component of the perturbation at time t, which is

nondimensionalised by U and h.

equation, which is still beyond the current standard
computer ability, unfortunately.

Additionally, it should be noted that the BB is
an unstable singular set in phase space as itself, on
which there moreover exist singular exact solutions,
so called “edge states”. (It could take infinite time to
reach them though.) An edge state may be referred
to as an attractor of the dynamical system restricted
on the BB. Hereby, when one tries to find such a point
on the BB as to satisfy the above definition by carry-
ing out the simulation starting from initial conditions
on the line intersecting the BB based on a bisection
scheme, he tends to obtain a part of the boundary
which is close to the edge state. The procedure to
trace the unstable boundary by the bisection scheme
is performed as if a golf player tries to win a hole,
which may be an edge state, on the tip of a swelled-
up mound by a putter, so it was termed originally
as “shooting method” (Itano & Toh (2001), Schnei-
der et al. (2008)). Although edge states are no more
than a part of the BB, the BB may be constituted by
several stable or unstable manifolds of these singular
exact states as if a tent is spanned by a frame of poles
and a supporting rope.

RESULTS

Following the earlier work by Wang et al. (2007),
which verified that the lower branch of NBW ex-
ists as an edge state on the BB of PCF, we inves-
tigate a structural aspect of the BB around HVS, the
more primitive solution than NBW, by the shooting
method. We take a plane in phase space, on which
the three distinct exact steady solutions of PCF lie,
the laminar state, the lower branch of HVS, the lower
branch of NBW. The associated states are respec-
tively depicted as uL, uH, and uN, hereafter. Using a
couple of parameters (a,b), a state u(0) on the plane
is expressed as superposition of these solutions as fol-
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Figure 2. Trajectories starting around uH separates

towards either towards the laminar or the turbulent

states due to a little additive perturbation to the ini-

tial state, via NBW, which are obtained by the shoot-

ing method at Re = 300. The initial state consists of

uH with the little perturbation, which does not satisfy

the reflection symmetry.

lows

u(0) = buL +(1− b)u′ , u′ = (1−a)uH +auN .

It should be noted that u(0) satisfies the incompress-
ible condition, but is not necessarily equivalent to a
steady state of the governing equation. By adopting
the state u(0) as an initial state, a number of trial cal-
culations of time development of the state based on
the shooting method are carried out to outline a part
of the BB. Firstly, here fixing a = 0, we demonstrates
the shooting method (Fig. 1). It is shown that the
final state u(t) goes down to uL in case of b < 0 but
it develops to some turbulent state in case of b > 0,
which provides an evidence that the HVS is on the
BB.

Hereafter, let us plot trajectories in the phase
space on the x-y plane as follows. The distance be-
tween two different flow states is defined as the half of
norm of the difference of the associated velocity field,

∆E(u1,u2) =

∫

V
|u1 −u2|2dv,

where V is the total volume of channel. For instance,
the distance of HVS from the laminar state is mea-
sured as

√
∆E(uH,uL). If one plots the laminar state

at the origin, and the HVS on the x axis with the
distance, then, in a natural sense, NBW may be plot-
ted on the x-y plane so as to be consistent with the
corresponding distances from the laminar state and
the HVS. NBW bifurcated from HVS with breaking a
symmetry, so another reflected image of NBW would
be plotted at the half plane y < 0. Generally speak-
ing, since the original phase space has much higher
dimensions than that of the x-y plane shown here,
any other state of flow cannot be plotted with keep-
ing its identity in the projection.
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Figure 3. Amplitude of Fourier modes for HVS in

PCF are plotted against Re for (Lx,Lz) = (π,2π).

Streak u0(y,z)− ū(y) is indicated as order 1 for the

reference, which was verified in Wang et al. (2007).

All the amplitudes of HVS decreases with increase of

Re. This fact suggests the HVS, which could bifur-

cate from infinity, may be a criterion of transition.

With a variety of a couple of values (a,b), a plenty
of trial calculations are carried out to outline a part
of the BB. In Fig.2, we plot only a could of trajecto-
ries starting from two different initial states using b
with a subtle difference (a = 0.04 in both cases), on
the plot. This implies that the BB must exist be-
tween two trajectories; one of the unstable manifolds
of HVS heads towards NBW, which lies on the BB.
This shooting method carried out at Re = 300, but
even if Reynolds number is increased Re ∼ 1000, we
could obtain similar behaviour as shown on the same
plot.

According to Wang et al. (2007), again, it was
shown that the NBW remains a streak structure at
high Reynolds numbers. Here, the streak structure
of NBW is referred to as streamwise velocity compo-
nent with a finite amplitude perturbation ū(y) from
the laminar state y, which is maintained by a vor-
tex sheet of NBW at high Reynolds numbers. This
vortex sheet is a kind of critical layer getting to be
thinner as increase of Reynolds number. This fact
means that the distance of NBW from the laminar
state, ∆E(uN,uL), is not vanishing but kept finite at
the infinite Reynolds limit. It is also supported even
by another fact that NBW is a derivative of the HVS,
which bifurcates from the laminar state via secondary
flow (Itano & Generalis (2009)). Unless the bifurca-
tion point of the derivative branch (NBW) becomes
that of the primitive branch (HVS), which happens
hardly in a natural sense, NBW does not connects
directly to the laminar state at the infinite Reynolds
number. These two facts imply the NBW does “not
bifurcate from infinity”, on the contrary of the title
of the first report on the exact solution in PCF by
Nagata (1990), which was also previously suggested
by Wang et al. (2007).

In contrast with NBW, as has been shown in Gen-
eralis & Itano (2010), the bifurcation point of HVS
(tertiary branch) from the secondary branch is quite
close to that of the secondary branch from the lami-
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nar state. Additionally, we performed the tracing of
HVS here up to as high Reynolds number as possible,
and showed the several representative components of
the HVS to compare it to that of NBW in Fig.3. For
reference with Fig.1 of Wang et al. (2007), the stream-
wise component of perturbation ū(y)−y is plotted in
the Fig.3 for the both states, NBW and HVS. The fig-
ure indicates that HVS asymptotically approaches to
the laminar state, as it were, bifurcates from the lam-
inar state at the infinite Reynolds number. Thus, the
lower branch of HVS, rather than that of NBW, gives
us a more practical criteria of laminar-turbulent tran-
sition of PCF at the relatively high Reynolds num-
ber, which provides the importance of HVS in the
laminar-turbulent transition of PCF at the moderate
Reynolds number. The comparison with result ob-
tained by Duguet et al. (2010) still remains open for
the time being.

CONCLUDING REMARKS
We will summarise briefly our results. Firstly,

the lower branch of HVS is on the BB at a higher
Reynolds number. Secondly, while one of unstable
manifolds of HVS connects to the laminar state, an-
other unstable manifold of HVS connects to the lower
branch NBW, that is, a hetero-clinic orbit of these
solutions constitutes the BB. Thirdly, NBW is a ro-
bust attractor in BB even at high Reynolds numbers,
which is a conclusion given by Wang et al. (2007).
Fourthly, HVS asymptotically approaches to the lam-
inar state.

Taking all four results into account, one would
reach a scenario of typical turbulent transition from
the dynamical view of point. In experiments of the
turbulent transition, the norm of disturbance in the
stream is annihilated at the initial stage. In case
that the flow occurs transition, though, the adopted
smallest perturbation necessarily satisfies the reflec-
tion symmetry, which is inferred from the first and
the forth results. From the second result, we can
concludes that the trajectory tends to approaches
towards NBW along the hetero-clinic orbit on BB.
In the downstream, NBW-type structures are preva-
lent, while HVS is observed rarely, which is sug-
gested from the third result. This scenario gives us
a clue to the question, why the hairpin-like structure
with spanwise reflection symmetry is often observed
in experiments of the turbulent transition, where all
the perturbation from the laminar state are kept to
be as small as possible, while meandering streaky
structure like NBW is ubiquitous in fully developed
turbulent at further downstream of the experiments
(cf.Schlatter et al. (2011)).
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