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ABSTRACT
The goal of the present study is to establish a method

that can capture the uncertainty in the Reynolds-averaged
Navier-Stokes prediction for dispersion from a point source
in the flow over a wavy wall. The methodology is based
on 1. perturbing the modeled Reynolds stresses in the mo-
mentum equations, thereby establishing a method that is
completely independent of the initial model form and 2.
introducing uncertainty in the turbulent scalar flux vector
in the transport equation for the scalar by using the per-
turbed Reynolds stresses in the generalized gradient diffu-
sion model. The Reynolds stress perturbations are defined
in terms of a decomposition of the Reynolds stress tensor,
i.e. based on the tensor magnitude and the eigenvalues and
eigenvectors of the normalized anisotropy tensor. Results
of a previous study are further analyzed and show that a re-
alistic representation of the uncertainty in the velocity field
is obtained. In addition, an a priori analysis of the scalar
flux model alignment indicates that, provided sufficient un-
certainty is introduced in the Reynolds stresses, an adequate
representation of the uncertainty in the scalar flux vector can
be obtained. Based on these results, a UQ study will be for-
mulated to quantify the uncertainty in the scalar dispersion.

INTRODUCTION
Reynolds-averaged Navier-Stokes (RANS) simula-

tions remain the most affordable technique for simulating
complex turbulent flow and scalar transport phenomena.
For many engineering applications, the reliability of the re-
sults is limited by the assumptions introduced by turbulence
models based on the linear eddy-viscosity hypothesis, and
by turbulent scalar flux models based on the gradient diffu-
sion hypothesis. Complex flow features such as flow sep-
aration and reattachment are not predicted with consistent
accuracy and errors in the turbulent velocity field directly
influence the solution for transported scalars. These errors
can be amplified, or cancelled out, by the turbulent scalar
flux model, which introduces further uncertainties in the so-
lution for the scalar field.

In Gorlé & Iaccarino (2013) epistemic (model-form)
uncertainty in the mixing of a jet in supersonic cross flow
configuration was quantified by introducing perturbations
in the Reynolds stress tensor and the turbulent scalar flux
vector. The idea to quantify the uncertainty related to the
turbulence model through the introduction of perturbations
in the Reynolds stress tensor was first introduced in Emory
et al. (2011). The method defines the perturbations in terms
of the magnitude of the tensor, i.e. the turbulence kinetic
energy, and the eigenvalues and eigenvectors of the normal-
ized anisotropy tensor, thereby being completely indepen-
dent of the initial turbulence model form. The approach
can be extended to introduce perturbations in the turbulent
scalar flux vector, by using the perturbed Reynolds stresses
in the formulation for the diffusion coefficient tensor in a
generalized gradient diffusion model.

The results presented in Gorlé & Iaccarino (2013)
showed the promising capabilities of the approach, and also
indicated a number of remaining questions for future re-
search. In particular, the parametrization of the perturba-
tion functions and a more efficient strategy to identify upper
and lower bounds were identified as a major challenge. In
(Gorlé et al. , 2012), these questions were further addressed,
and the uncertainty in the location of the reattachment point
for the flow over a wavy wall was successfully quantified.

In the present study we investigate the possibility of
extending this result to include uncertainty quantification
for the dispersion of a passive scalar over the wavy wall.
We first present a further analysis of the results of Gorlé
et al. (2012) to determine whether the representation of
the uncertainty in the velocity field is sufficient to ade-
quately represent the uncertainty in the advection of the
scalar. Secondly we present the results of an a priori in-
vestigation of the scalar flux model alignment to investigate
whether the method presented in Gorlé & Iaccarino (2013)
is a suitable starting point for representing the uncertainty
in the turbulent scalar flux models. A direct numerical sim-
ulation (DNS) database for the configuration is available
from Rossi (2011) to perform this analysis.

The following section of this paper summarizes the
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configuration studied. Subsequently an overview of the
epistemic uncertainty quantification (EUQ) methodology
for quantifying uncertainty related to the turbulence model
and the turbulent mixing model is presented. The results
obtained in Gorlé et al. (2012) are summarized and com-
plemented with additional post-processing to illustrate the
uncertainty in the velocity field. Finally, the alignment of
the turbulent scalar flux vector obtained from the DNS and
from an a priori evaluation of the turbulent scalar flux mod-
els is presented. These results are the starting point for for-
mulating a complete UQ approach to predict uncertainty in
the scalar dispersion.

CONFIGURATION, DNS DATA AND RANS
SIMULATIONS

The configuration considered is identical to the one
used in the DNS simulations by Rossi (2011) and is shown
in Figure 1. The geometry is defined as a two-dimensional
channel, with the top wall a flat plate and the bottom wall
a wavy surface with 4 wave crests. The DNS database
includes results for the flow and for scalar dispersion at
Re = 6850, based on the bulk velocity Ub at the wave crest
and the average channel height H.

The RANS simulations were performed on a mesh of
256 x 96 x 128 cells, and the near wall resolution was suf-
ficient (y+ ≈ 1) to avoid the use of wall functions. For
the flow field periodic conditions are applied in the stream-
wise and spanwise directions. The flow is two-dimensional,
but the point source dispersion problem is fully three-
dimensional, and the boundary conditions for the scalar are
zero-gradient conditions at the outlet and on the sides of the
computational domain.

The governing equations are the incompressible
Reynolds-averaged equations for conservation of mass and
momentum. A two-equation linear eddy viscosity model
based on the turbulent viscosity hypothesis was used:

uiu j =
2
3

kδi j −2νtSi j, (1)

where uiu j are the Reynolds stresses, k is the turbulence
kinetic energy, νt is the turbulent viscosity and Si j is the
strain rate tensor. The results included in this paper were
obtained by modeling the turbulent viscosity with the SST
k-ω model. A similar analysis with the realizable k-ε model
will be performed in the future.

The scalar dispersion is modeled by solving the
Reynolds-averaged transport equation for a scalar quantity
Φ. The turbulent scalar fluxes uiφ are represented with
a generalized gradient diffusion model (Daly & Harlow,
1970):

uiφ =−αφ τφ uiu j
∂Φ
∂x j

, (2)

where αφ is a model coefficient and τφ a time scale. The
tensorial diffusion coefficient formulation, which uses the
Reynolds stresses for determining the different components,
forms the basis of the UQ approach. The model will
also be shown to provide a better prediction of the turbu-
lent scalar flux vector than the standard gradient diffusion
model (SGDH), which uses a scalar diffusion coefficient:
uiφ =− νt

Sct

∂Φ
∂xi

, where Sct is the turbulent Schmidt number.

EUQ METHODOLOGY

Turbulence Model EUQ
A standard approach for investigating the influence of

the turbulence model is to compare different models, of-
ten belonging to the same class of two-equation turbulence
models based on the turbulent viscosity hypothesis. Such
traditional sensitivity studies can not capture the full model
form uncertainty, because this uncertainty is largely deter-
mined by the fundamental model assumptions, i.e. those
made in the turbulent viscosity hypothesis (Eq. 1).

The methodology proposed in Emory et al. (2011) is
intended to overcome this limitation, by being completely
independent of the initial model form. It consists in directly
introducing perturbations in the Reynolds stress tensor com-
puted by the model and used in the momentum equations.
The definition of the perturbations is based on reformulat-
ing the Reynolds stress tensor Ri j in terms of the isotropic
part and the eigenvalue decomposition of the normalized
anisotropy tensor ai j = vikΛklv jl :

Ri j = 2k
(

1
3

δi j + vi jΛklv jl

)
, (3)

where k is the turbulent kinetic energy, δi j the Kronecker
delta, vi j the matrix of orthonormal eigenvectors and Λkl the
diagonal matrix of eigenvalues λl . This formulation does
not involve any modeling assumptions, thereby present-
ing a general way of introducing epistemic uncertainty in
the Reynolds stress tensor, writing the perturbed Reynolds
stresses as:

R∗
i j = 2k∗

(
1
3

δi j + v∗ikΛ∗
klv

∗
jl

)
. (4)

The perturbations are thus specified in terms of a discrep-
ancy in the turbulence kinetic energy k∗ = k+∆k, the diag-
onal matrix Λ∗

kl of perturbed eigenvalues λ ∗
l , and perturbed

eigenvectors v∗i j = qikvk j, where qik is an orthonormal rota-
tion matrix.

The main challenge in this approach is the definition
of the perturbations, which should introduce sufficient un-
certainty in the solution without being overly pessimistic
about the performance of the turbulence model. In Gorlé
et al. (2012) the definition of the perturbation functions is
based on two basic concepts:

1. A marker, which identifies regions that deviate from
parallel shear flow as regions where perturbations
should be introduced.

2. Systematic perturbations introduced in the marked re-
gion by (1) moving the eigenvalue of the anisotropy
tensor towards the one-, two- or three-component cor-
ners of the Barycentric map, shown in Figure 2
(Banerjee et al. , 2007); (2) rotating the eigenvec-
tors with the Euler angle that preserves the two-
dimensionality of the flow; and (3) using the tur-
bulent production term computed with the modified
anisotropy tensor to perturb the turbulence kinetic en-
ergy. It is important to note that this methodology only
allows accessing realizable states of turbulence, since
the updated eigenvalues are located inside the Barycen-
tric triangle.

2



August 28 - 30, 2013 Poitiers, France

TSFA

Figure 1. Flow configuration (Rossi, 2011).

Figure 2. Barycentric map (Banerjee et al. , 2007).

The exact formulation of the marker can be found
in Gorlé et al. (2012), where validation with the DNS
database showed that the regions where the turbulence
model fails to produce an accurate prediction are correctly
identified. Subsequently, the perturbations introduced in
these regions were selected by identifying which eigenvalue
and eigenvector perturbations result in the maximum and
minimum turbulence kinetic energy production term inte-
grated over the marked region. These perturbation are then
expected to show the smallest and largest separation bubble
respectively.

The reasoning for perturbing the turbulence kinetic en-
ergy indirectly through the production term stems from an
initial analysis where the influence of the turbulence kinetic
energy production term on the solution in the turbulence
model was investigated, by performing three different sets
of simulations. First, both the RANS flow and turbulence
equations were solved. Secondly, the effect of the coupling
to the mean flow was eliminated by freezing the flow to the
time-averaged DNS flow field and only solving the trans-
port equations for the turbulence quantities. Finally, also the
production term in the turbulence transport equations was
frozen to the production term calculated from the DNS. Fig-
ure 3 presents the comparison for the turbulence kinetic en-
ergy for the last two solutions obtained, i.e. when using the
DNS flow field and the DNS flow field in combination with
the exact production term, Pk = −uiu j

∂Ui
∂x j

. The difference
between both sets of simulations is that when only freezing
the DNS flow field, Pk is still determined from the inexact
Reynolds stresses as computed using the turbulent viscos-
ity hypothesis, while in the second case the exact Reynolds

stresses are used. The result shows an underprediction of up
to 100% with the SST k−ω model. However, when using
the correct production term for k the model predicts k with
much higher accuracy.

In Gorlé et al. (2012), it was found that the maximum
and minimum integrated production terms are found when
moving the eigenvalues to the one- and three-component
corners of the map, respectively, without a rotation of the
eigenvectors. It was shown that these two simulations cap-
ture the uncertainty in the size of the separated region and
give a very realistic representation of the uncertainty in the
streamwise wall shear stress for both models.

Mixing Model EUQ
The standard approach for quantifying the influence of

the mixing model is to vary the coefficient in the formula-
tion for the diffusion coefficient, i.e. the turbulent Schmidt
number when using the standard gradient diffusion hypoth-
esis. As for the turbulence model, this does not allow ade-
quate characterization of the uncertainty, since the solution
is still governed by the basic assumption that the turbulent
scalar fluxes and mean scalar gradients are aligned, and that
the proportionality coefficient is isotropic.

In Gorlé & Iaccarino (2013) it was shown that
these limitations can be overcome by using the perturbed
Reynolds stresses from Eq. 4 in the generalized gradient
diffusion hypothesis (GGDH) given in Eq. 2. While the
GGDH model is not the most general or accurate model
available, it is the simplest model that uses the Reynolds
stresses. This allows to induce a scaling and rotation of
the vector by defining perturbations in the GGDH model
formulation based on the perturbations introduced in the
Reynolds stresses as follows:

uiφ
∗
= α∗

φ τφ uiu j
∗ ∂Φ

∂x j
. (5)

The perturbed scalar fluxes uiφ
∗ are then defined in terms

of a perturbed model constant α∗
φ , which scales the origi-

nal vector and the perturbed Reynolds stress tensor uiu j
∗,

which will induce a rotation of the vector.
For the simulation of a jet in a supersonic cross flow,

the approach was capable of quantifying the uncertainty in a
quantity of interest (QoI) representative of the downstream
mixing, when defining the perturbations based on a com-
parison of the Reynolds stresses obtained from RANS with
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Figure 3. Comparison of k from DNS and SST k−ω (SSTko) models.

those resolved in a LES and subsequently solving an op-
timization problem to identify the maximum QoI. In the
present study it is investigated whether a more general ap-
proach for defining the perturbation functions, similar to the
one outlined above for the Reynolds stresses, can be used to
represent the uncertainty in the downstream mixing.

RESULTS
In order to correctly quantify the uncertainty in the

scalar field, it is necessary to 1. adequately represent the
uncertainty in the mean flow field and 2. adequately repre-
sent the uncertainty in the turbulent scalar fluxes. The first
subsection presents the uncertainty predicted in the mean
velocity field using the methodology described in Gorlé
et al. (2012) and summarized above. The second sub-
section presents an a priori investigation of the turbulent
scalar flux model alignment to investigate whether the EUQ
method for the turbulent scalar fluxes presented above could
capture the uncertainty for the dispersion from the point
source over the wavy wall.

Uncertainty in the Flow Field
Figure 4 presents the velocity contours over one wave

length for the DNS, the unperturbed k−ω SST model and
the perturbed k−ω SST model, with eigenvalue perturba-
tions towards the C1 and C3 corners of the Barycentric map.
The plots show that quantitatively the uncertainty in the ve-
locity field is well represented, especially in the region be-
low the crest of the wave.

A more quantitative comparison is presented in Fig-
ure 5. The plots show the DNS profiles for the horizontal
and vertical velocities, and the lines that present the max-
imum and minimum values obtained from the perturbed
runs. The plots confirm the observations from Figure 4,
with the uncertainty in the velocity field being well repre-
sented by the two perturbed runs. For the horizontal veloc-
ity it is only on top of the wave crest that the uncertainty in
the velocity field is less well represented. For the vertical
velocity, the two runs do not seem to capture the maximum
value on top of the wave crest and the negative peak below

the wave crest.
As a starting point for analyzing the uncertainty in the

scalar flux field, the representation of the uncertainty in the
flow field using these two runs is found to be sufficient. If
the initial UQ results for the scalar field would show insuf-
ficiently large bounds that can be related to the mean ve-
locity field, it is expected that the uncertainty in the flow
field could be further increased to fully encompass the DNS
result by either increasing the area in which the perturba-
tions are introduced or by increasing the magnitude of the
perturbations.

Evaluation of Discrepancies in the Scalar
Flux Field

The method for quantifying the uncertainty in the
scalar flux model is based on introducing perturbations in
the Reynolds stresses used in the GGDH model formula-
tion (Eq. 5). The results of this approach can only rep-
resent the uncertainty correctly if the perturbations in the
Reynolds stresses induce sufficient rotation in the turbulent
scalar flux vector. In a future analysis we will investigate
whether this can realistically be achieved using the two per-
turbed runs presented above by verifying the orientation of
the perturbed scalar flux vectors.

In the initial analysis presented below we verified the
original model form alignment for the SGDH and GGDH
models. Figure 6 presents the results for the cosine of
the angle between the actual turbulent scalar flux vector
obtained from the DNS database and the modeled scalar
flux vector, computed using the DNS Reynolds stresses and
DNS mean scalar field as input. The plot clearly demon-
strated the superior performance of the GGDH model,
which is an indication that, provided we introduce sufficient
uncertainty in the Reynolds stresses, we can get an adequate
representation of the uncertainty in the scalar flux vector us-
ing 5.

CONCLUSIONS AND FUTURE WORK
In a previous study (Gorlé et al. , 2012), we showed

that the uncertainty in the size of the separated region and
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Figure 4. Contours of the horizontal (top) and vertical (bottom) velocity from DNS, unperturbed SST k−ω (SSTko) model,
and perturbed SST k−ω model.

Figure 5. Comparison of velocity profiles at 4 different horizontal locations along the wave length. DNS result (black solid
line) and maximum and minimum of the perturbed SST k−ω (SSTko) simulations (blue dotted lines).

Figure 6. Comparison of k from DNS and SST k−ω (SSTko) models.

in the wall shear stress for the row over a wavy wall can be
captured by introducing perturbations in the Reynolds stress
tensor .

In the present study we are investigating extending this
approach to quantify the uncertainty in the scalar field re-
sulting from dispersion from a point source over the wavy
wall. It was shown that the representation of the uncer-
tainty in the flow field using the two runs which allowed
quantifying the uncertainty in the wall shear stress is suffi-

cient to serve as a starting point to quantify the uncertainty
in the advection of the scalar. An a priori analysis of the
scalar flux model alignment showed the benefits of using
the tensorial diffusion coefficient formulations ( 2) and in-
dicates that, provided we introduce sufficient uncertainty in
the Reynolds stresses, we could get an adequate representa-
tion of the uncertainty in the scalar flux vector using 5.

In a further analysis, we will verify the rotations in-
duced in the turbulent scalar flux vector by introducing
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the Reynolds stress perturbations used in the two perturbed
k−ω SST models. Based on this result, a UQ study will be
formulated where Reynolds stress perturbations will be in-
troduced both the momentum equations and the scalar trans-
port equation to quantify the uncertainty in the scalar disper-
sion.
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