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ABSTRACT

We study the transition to turbulence in the asymptotic
suction boundary layer (ASBL) by direct numerical sim-
ulation. Tracking the motion of trajectories intermediate
between laminar and turbulent states we can identify the
invariant object inside the laminar-turbulent boundary, the
edge state. In small domains, the flow behaves like a trav-
elling wave over short time intervals. On longer times one
notes that the energy shows strong bursts at regular time in-
tervals. During the bursts the streak structure is lost, but
it reforms, translated in the spanwise direction by half the
domain size. Varying the suction velocity allows to em-
bed the flow into a family of flows that interpolate between
plane Couette flow and the ASBL. Near the plane Couette
limit, the edge state is a travelling wave. Increasing the suc-
tion, the travelling wave and a symmetry-related copy of
it undergo a saddle-node infinite-period (SNIPER) bifurca-
tion that leads to bursting and discrete-symmetry shifts. In
wider domains, the structures localize in the spanwise direc-
tion, and the flow in the active region is similar to the one
in small domains. There are still periodic bursts at which
the flow structures are shifted, but the shift-distance is no
longer connected to a discrete symmetry of the flow geom-
etry. Two different states are found by edge tracking tech-
niques, one where structures are shifted to the same side at

every burst and one where they are alternatingly shifted to
the left and to the right.

Introduction
Transition to turbulence in shear flows has puzzled

physicists for decades. In many systems the transition oc-
curs while the laminar flow profile is linearly stable (Gross-
mann, 2000). The transition is connected to the appear-
ance of coherent three-dimensional invariant structures, as
identified for example in plane Couette flow (Nagata, 1990;
Clever & Busse, 1997; Kawahara & Kida, 2001; Wang
et al., 2007; Viswanath, 2007; Gibson et al., 2008; Halcrow
et al., 2009) and most prominently pipe flow (Faisst & Eck-
hardt, 2003; Wedin & Kerswell, 2004; Willis & Kerswell,
2008), where flow structures very similar to the numerically
calculated ones have been observed experimentally by Hof
et al. (2004). Edge states are invariant attractors inside the
laminar turbulent boundary. Through their codimension-
one stable manifold, they guide the transition to and the
decay from turbulence (Toh & Itano, 2003; Skufca et al.,
2006; Schneider et al., 2007b; Eckhardt & Schneider, 2008;
Schneider & Eckhardt, 2009; Vollmer et al., 2009; Lebovitz,
2009; Kreilos & Eckhardt, 2012) and they are, at least
in simple and confined geometries, transiently visited by
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Figure 1. The cross-flow energy Ec f for the edge state
in a small periodic domain of size Lx × Lz = 6π × 3π at
Reynolds number 500. The time evolution consists of long
calm period, where the cross-flow energy is almost constant
and short energetic bursts at regular intervals. While we
only plot two peaks, the curve continues periodically. The
two red circles mark the times where the snapshots in fig-
ure 2 were taken.

turbulent trajectories (Kawahara, 2005; Schneider et al.,
2007a).

While most of the investigations on edge states have fo-
cused on internal flows, many interesting flow situations are
external flows. Attempts to characterize the edge in the Bla-
sius boundary layer (Duguet et al., 2012; Cherubini et al.,
2011) have to deal with the conceptual difficulties associ-
ated with the spatial development. In two recent studies
(Khapko et al. (2013) and Kreilos et al. (2013)) edge states
in the asymptotic suction boundary layer have been docu-
mented. In this work, we will summarize the results from
those two studies and discuss additional aspects

System and numerics
The asymptotic suction boundary layer (ASBL) forms

if fluid streams over a flat plate into which it is sucked
with a constant, homogeneous suction velocity Vs, Hocking
(1975); Schlichting (2004). The laminar profile is trans-
lationally invariant, which makes this flow far easier to
deal with in numerical simulations than a spatially growing
boundary layer. With the free-stream velocity U∞ parallel
to the x-direction, the dynamic viscosity ν , the definition
δ = ν/Vs and y the wall-normal direction, the laminar flow
profile reads:

U0(y) = (U∞(1− e−y/δ ),−Vs,0). (1)

We base the Reynolds number on the boundary layer thick-
ness δ , Re = U∞δ

ν . In a finite computational domain the
velocity at the upper wall is imposed to be U∞.

We investigate the transition to turbulence in the ASBL
by direct numerical simulations, using two pseudo-spectral
codes, channelflow (Gibson, 2012) and SIMSON (Cheva-
lier et al., 2007). The codes employ periodic boundary con-
ditions in the streamwise and spanwise directions and no-
slip boundary conditions at the walls.

Edge states in small periodic flow domains
In this section, we discuss the properties of the edge

state in a domain of size Lx × Ly × Lz = 6π × 25× 3π at

a)

b)

Figure 2. Snapshots of the edge state at two different
times. We plot low speed streaks using isocontours of the
downstream velocity perturbations u = −0.25 and visual-
ize vortices by isocontours of the λ2 vortex detection cri-
terion. At the walls of the box, we color-code the down-
stream velocity perturbations. The box is shown twice in
the spanwise direction, to help visualizing across the pe-
riodic boundaries, and we do not show the empty upper
part of the box. a) At time t = 0, Ec f is minimal. There
is one low- and one high-speed streak, accompanied by a
pair of counter-rotating streamwise-oriented vortices. The
gray isocontours are for λ2 = −1 · 10−4. The isocontours
of the downstream velocity show that the streaks are almost
straight. b) At time t = 900, just before a burst. The streaks
are a lot more contorted, the two vortices lean across the
low-speed streak and are about to tear it apart. The isocon-
tours are for λ2 =−5 ·10−5.

Reynolds number Re = 500; the resolution is Nx ×Ny ×
Nz = 96× 193× 96. It was shown by Kreilos et al. (2013)
that in small periodic domains, the flow behaves like a trav-
elling wave dominated by ordered modulated streaks over
short time intervals. On longer times one notes that the en-
ergy is not constant, as it would be for a travelling wave, but
shows strong bursts with a period of T = 1760. The evolu-
tion of the cross-flow energy Ec f =

1
LxLz

∫
V (v

2 +w2)dV is
shown in figure 1, where the long calm phases and the short
violent bursts can be seen.

Flow visualizations at the indicated points are shown in
figure 2. Isocontours of the fluctuating downstream veloc-
ity u = −0.25 are plotted in blue and indicate the location
of low-speed streaks; u is also color-coded at the walls of
the box. Vortices are visualized using the λ2 vortex detec-
tion criterion (Jeong & Hussain, 1995). The box width is
doubled in the spanwise direction, to facilitate visualization
of the dynamics across the periodic boundaries.

The flow is composed of one low- and one high-speed
streak and a pair of counter-rotating streamwise-elongated
vortices. During the calm phase, the streaks are almost
straight. The two vortices sustain the streaks by pushing
high-speed fluid from the outer layers towards the wall, cre-
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Figure 3. Time-averaged cross-flow energy for different box sizes. Overall, the cross flow energy is smaller in larger boxes,
but there are some notable exceptions to that general trend around 5.4π×2.5π . The dashed line indicates Lx = 2Lz.
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Figure 4. Dependence of burst period T on the streamwise and spanwise domain size. T increases to the upper right corner,
i.e. for larger boxes. Furthermore, T is varies less along horizontal lines and increases more rapidly along the vertical axis for
wider boxes. Boxes where no calculations have been performed or showed no periodic results are left blank. The dashed line
indicates Lx = 2Lz.

ating a high-speed streak, and lifting low-speed fluid from
the wall into the main flow, creating the low-speed streak.
As time progresses, the streaks begin to tilt and the vortices
lean over the low-speed streak, as can be seen in figure 2
(b). Finally, the streak is torn into two parts by the action
of the vortices, the event corresponding to the peak in the
cross-flow energy. The two vortices then switch their posi-
tions and create a new pair of streaks, after which the pro-
cess starts anew, but with all structures shifted by exactly
half a box-width. The state obeys a shift-and-reflect sym-
metry, i.e. it is invariant under a shift by Lx/2 followed by
an inversion in z; the symmetry has not been imposed in the
calculations but it is found a posteriori. It is this symmetry
that fixes the distance of the jumps to be exactly Lz/2, since
only then there is no preferred direction and jumps to the
left and the right are the same.

Varying the suction velocity allows to embed the flow
into a family of flows that interpolate between plane Cou-
ette flow and the ASBL. Near pCf, the edge state is a travel-
ling wave. Increasing the suction, the travelling wave and a
symmetry-related copy of it undergo a saddle-node infinite-
period (SNIPER) bifurcation that leads to the bursting and

the discrete-symmetry shifts (Kreilos et al., 2013).

Variation of box size
The periodicity in the streamwise and spanwise direc-

tion is an artificial constraint. In this section we study the
dependence of the edge state on the numerical parameters
Lx and Lz, using a Reynolds number of Re= 400 and a fixed
height of Ly = 10, as in Kreilos et al. (2013). In pCf, a box
size close to Lx = 2Lz has been found to be optimal for co-
herent structures (Clever & Busse, 1997; Wang et al., 2007).
We hence focus on this ratio, and vary Lz from Lx/2−0.5π
to Lx/2+0.4π in steps of 0.1π , with Lx ranging from 3.2π
to 7π . In some boxes, edge state tracking did not converge
to a periodic state within our integration time and we found
a chaotic edge trajectory; in the following we only consider
periodic states. The main result is that the general struc-
ture of all edge states remains the same: there are long calm
phases, interrupted by bursts at regular time intervals. At
every burst, the flow structures shift by half a box width.

In order to characterize the states further, we study the
dependence of cross-flow energy and burst period on do-
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Figure 5. The cross-flow energy along the “diagonal” Lx = 2Lz. Upper panel: maximum of Ec f during bursts. Middle panel:
Ec f averaged over one period. Lower panel: minimum of Ec f after a burst. All calculations performed at Re = 400, calculations
where a shift-and-reflect symmetry was imposed are marked with full symbols. As a general trend, all of the three energies are
lower in larger boxes. The minimal Ec f is almost constant from Lx = 5.5π to the largest calculated boxes. Some resonance
phenomenon due to the constraint from the periodic boundaries is suggested by the regular spacing of the extrema in the
energies.

main size. We show them in figures 3 and 4 as pseudocolor
plots with Lx on the horizontal axis and Lz on the vertical
one. The result for the box Lx×Lz is representad in the rect-
angle (Lx±0.1π)×(Lz±0.05π). Rectangles where no cal-
culations were performed or showed no regular behaviour
are left white. The diagonal Lx = 2Lz is indicated by the
dashed black line.

Figure 3 shows the time-averaged cross-flow energy.
As a general trend, the cross flow energy is high in the lower
left corner of the plot where the box size is small and low in
the upper right corner, in larger boxes. The flow structures
seem to have a preferred size and do not grow arbitrarily
as the box size is increased. A notable exception from the
overall trend are 13 states in a small region around 5.4π ×
2.5π .

The bursting period T , presented in figure 4, varies in-
versely to the cross-flow energy. It is short for small boxes
and long for bigger boxes. There are probably at least two
important contributions to this effect. First, higher energies
trigger the bursts more frequently. The anti-correlation is
easily seen by comparing figures 3 and 4. But a second
contribution is revealed by a closer inspection of figure 4:
the bursting period along a horizontal line of constant box
width is roughly constant, but it increases drastically along
vertical lines, as the box width grows. In wider boxes, the
oscillations of the streaks have more time to build up and
the vortices can tilt more before they cross and the streak
breaks up.

We present a more detailed study along the diagonal
Lx = 2Lz in figure 5, where three different quantities based
on the cross-flow energy are shown. In the upper panel,
we show the maximum of Ec f during a burst; it measures
the intensity of a burst. In the middle panel, Ec f is aver-
aged over one period. And in the lower panel, we show

the minimum of Ec f after a burst. For all three quantities,
there is a general trend to decrease for increasing box sizes.
But the dependence is non-monotonic, especially Ec f max
shows a drastic increase around Lx = 4.8π , while Ec f min
drastcially drops at the same time. Particularly interesting
is the fact that there seems to be a rather regular variation,
with a sharp maximum of 〈Ec f 〉T at rather regular spacing
and a smooth minimum between. This hints at some reso-
nance phenomenon due to the constraint from the periodic
boundaries.

Spanwise localized edge states
In the last section we have shown that in small periodic

domains the edge tracking algorithm converges to qualita-
tively similar states for a wide range of box sizes. If the
spanwise domain size is increased to larger values, the spac-
ing between the streaks becomes too large and structures
will localize. Edge states in such wide boxes have been
studied in Khapko et al. (2013). In this work, we use a box
of size Lx × Ly × Lz = 3π × 25× 50 with a resolution of
48×193×256. Interestingly, depending on the initial con-
dition, the edge state tracking algorithm converges to three
different states (up to trivial translations), which can be cat-
egorized by the direction of propagation. All of the states
again consist of longer calm phases and violent bursts where
the flow structures break up and reform at a different spatial
location.

We found one state where the structures alternatingly
jump to the left and the right, the cross-flow energy of the
state is shown in figure 6(a); we name this state LR in
the following. Other initial conditions converged to a state
which always jumps in the same direction, the cross-flow
energy is shown in figure 6(b). We have found the state that
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Figure 6. Cross-flow energy for localized edge states in a
wide box at Re = 500. The red curve shows the spanwise
bulk-velocity; it is a good indicator to distinguish the di-
rection into which the structures are displaced. a) LR-state:
the spanwise bulk-velocity changes sign after each burst,
the structures are displaced alternatingly to the left and the
right. The interval between the jumps is 744 time units, . b)
L-state: wbulk is always negative, at each burst the structures
are displaced to the left. The interval between the jumps is
1234 time units.

always jumps left (L) and the one that always jumps right
(R). The burst period of the states is 744 for LR and 1234
for L and R. It is interesting to notice that these periods are
both smaller than the period of the state in the small box,
where it is 1760. While for increasing box sizes the period
for the extended structures increased even further (figure 4),
it is smaller for the localized cases.

The mechanism for the streak breakup is similar to the
one discussed above for the small boxes: after a burst, the
streaks are mostly aligned downstream. One low speed
streak is accompanied by a pair of vortices, which start
to lean over the streak, cross and switch their positions in
breaking up the streak. While the physical origin of the
bursts is still an instability of the low speed streak, the phase
space structure must be different compared to the small
box case. The SNIPER-bifurcation in the original form de-
scribed in Kreilos et al. (2013) requires periodic boundaries
and the equivalence of the jump right and left.

Conclusions
We have studied edge states in the asymptotic suction

boundary layer, both in small domains close to a minimal
flow unit (Kreilos et al., 2013) and in spanwise extended
domains (Khapko et al., 2013), where the flow structures
localize. The localization of edge states in larger domains
has also been observed in plane Couette flow (Schneider
et al., 2010b; Duguet et al., 2009) and pipe flow (Melli-
bovsky et al., 2009). In pCf it has been possible to identify

a snaking bifurcation responsible for the localization, see
Schneider et al. (2010a).

In the ASBL, for all cases where the edge state track-
ing converged to a non-chaotic state, the general structure
and dynamics of the state are the same. The flow exhibits
long quiescent phases, interrupted by regular violent bursts.
During the quiet phase, the dynamically active part of the
flow consists of a low speed streak which is flanked by a
pair of counter-rotating vortices. These vortices destabilize
the streak and, while originally almost aligned downstream,
start to tilt and lean over the streak. As the vortices over-
lap, they break up the streak and a turbulent burst occurs.
Afterwards, the structures reform at a different spanwise lo-
cation. This location is dictated by symmetry in the small
domain, where structures are translated by exactly half a
box width. In the wide domains, we found states where
the structures alternatingly are displaced left and right and
states where they are always shifted in the same direction.

In a small periodic domain, the flow pattern is robust
under variations of the size of the computational domain.
We have shown that the time interval between two consec-
utive bursts grows as the box size is increased, while the
time-averaged cross-flow energy decreases. If the ratio of
streamwise and spanwise domain size is kept fixed at two,
some resonances due to the imposed wavelenghts can be
observed.

Similar recurrence patterns as described here have also
been suggested to exist in edge trajectories in spatially de-
veloping boundary layers as discussed by Duguet et al.
(2012). It remains an open question, how the three edge
states in the wide domain are connected and whether their
origin can be traced to something similar like a SNIPER-
bifurcation.
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