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ABSTRACT 
The new transport equation for intermittency is 

developed and proposed in this research work, based on 
the definition of intermittency and the existing transport 
equations of laminar and turbulent kinetic energy. Its 
performance is compared with the two existing transition 
models used in commercial CFD software: Lk  model and 

Reθγ −  model, in case of bypass transition. It is found 
that the proposed model can accurately predict the mean 
streamwise velocity in the transition zone. For fC , k  

and u v′ ′− , the proposed model has the same performance 
as the Reθγ −  model. 
 
INTRODUCTION 

During the last decade, there have been two RANS-
based transition models used in commercial CFD 
software: Lk  model (Walters and Cokljat, 2008) and 

Reθγ −  model (Langtry and Menter, 2009). The 
Reθγ −  model was constructed based on correlations 

obtained from experimental data so that it is reliable only 
within a range of flow conditions that the experiment is 
set up to obtain such correlations. The Lk  model was 
developed based on basic physical mechanisms and their 
interaction to capture the flow transition, e.g. 
redistribution term (process) to model energy transfer 
from laminar to turbulent stages so that it is more 
attractive in such a way that it can be applied to a wider 
range of flow conditions. However, γ , k  and Lk  are 
strongly related to each other by the definition of γ . 
Therefore, their transport equations should be developed 
in an interconnected manner. This research work is aimed 
to identify the incomplete modeling scheme of the Lk  
model which requires one more transport equation for γ  
to 
 
 
 

 
 
complete the relationship among γ , k  and Lk , 
according to the definition of γ . Finally, the new 
transport equation for γ  will be developed and proposed 
here.  
 
DERIVATION OF A NEW INTERMITTENCY 
TRANSPORT EQUATION 

To begin with, γ  or the intermittency of laminar-to-
turbulent flow transition is defined as the fraction of time 
in which the flow is turbulent at a fixed point (Schneider, 
1995). According to its definition, γ  can be formulated as 
follows: 
 

TOTAL

t
t

γ =   (1) 

 
where 
 

TOTAL Lt t t= +   (2) 
 
with t  being the fraction of time in which the flow is 
turbulent at a fixed point and Lt  being the fraction of time 
in which the flow is laminar at a fixed point. In laminar 
flow regime, there exists only Lk , or the laminar kinetic 
energy, in which case ε  is the dissipation rate of Lk  only 
and hence 
 

L
L

kt
ε

=   (3) 

 
In fully turbulent flow regime, there exists only k , or the 
turbulent kinetic energy, in which case ε  is the 
dissipation rate of k  only and hence 
 

kt
ε

=   (4) 
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After substituting Eqs.(2)-(4) into Eq.(1), the definition of 
γ  becomes 
 

L

k
k k

γ =
+

  (5) 

 
This equivalent definition for γ  was proposed by Lardeau 
et al. (2009). Obviously, Eq.(5) represents an algebraic 
relationship among γ , k  and Lk . Therefore, one of them 
can be calculated from the others using Eq.(5). The value 
of k  can be obtained from the transport equation of k  in 
any k -based two-equation turbulence model in which 
case the SST k -ω  model is chosen here. The value of 

Lk  can be obtained from the transport equation of Lk  
proposed by Walters and Cokljat (2008). In principle, γ  
can be calculated directly from Eq.(5). The value of γ  
can then be used to control the production and destruction 
terms of the k -equation in order to account for the 
transitional effect on the mean flow as proposed by 
Langtry and Menter (2009). 

However, the adopted k - and Lk -equations are only 
semi-empirical mathematical models so that the values of 
k  and Lk  obtained are not exact and hence the value of 
γ  calculated from Eq.(5) is not truly its value. The only 
way to obtain the physically realistic value for γ  is to 
create a new transport equation for γ  by using its 
definition in Eq.(5), the k -equation and the Lk -equation. 
The question may arise why the new transport equation 
for γ  is needed when the γ -equations proposed by 
Durbin (2012) and Langtry and Menter (2009) are already 
existing as choices. The answer is that those three 
transport equations for k , Lk  and γ  were created 
independently by different research groups at different 
times for different purposes so that they obviously cannot 
fit together within the definition of γ  in Eq.(5). 
Moreover, the adopted transport equations of k  and Lk  
are physics-based while the existing transport equation of 
γ  in commercial CFD software is correlation-based 
which requires another transport equation for Reθ  to 
close the Reθγ −  transition model (Langtry and Menter, 
2009). Therefore, the new transport equation for γ  is 
essentially needed and its derivation is demonstrated 
below. 

First of all, Eq.(5) must be re-arranged as follows: 
 

Lk k
1
γ
γ

 
=  − 

  (6) 

 
For simplicity to show how to derive the transport 
equation for γ , the flow problem considered at this stage 
is the boundary layer on a flat plate with zero pressure 
gradient. Based on RANS computation and boundary-
layer approximation, the common standard form of the k  
transport equation can be written as 
 

T

k

k k kU V
x y y y

νν
σ

  ∂ ∂ ∂ ∂
+ = +   ∂ ∂ ∂ ∂   

*
2

T
U k
y

ν β ω
 ∂

+ −  ∂ 
 (7) 

 
After substituting Eq.(6) into Eq.(7), the resulting 
equation is 
 

( )
L L L

2
k k kU V U V

x y 1 x y1

γ γ γ
γγ

   ∂ ∂ ∂ ∂
+ + + =   ∂ ∂ − ∂ ∂−    

 

( )
L T

2
k

k
y y1

ν γν
σγ

  ∂ ∂
+   ∂ ∂ −    ( )

T L
2

k

k
y y1

ν γν
σ γ

   ∂ ∂ + +    ∂ ∂−   
 

T L

k

k
1 y y
γ νν
γ σ

  ∂ ∂
+ +   − ∂ ∂   

T L

k

k
y 1 y

ν γν
σ γ

   ∂ ∂
+ +     ∂ − ∂  

 

2

T
U
y

ν
 ∂

+   ∂ 

*
Lk

1
γ β ω
γ

−
−

  (8) 

 
For bypass transition, the transport equation of Lk  
proposed by Walters and Cokljat (2008) is given as 
follows: 
 

,

2
L L L

T
k k k UU V
x y y y y

ν ν
  ∂ ∂ ∂ ∂ ∂

+ = +     ∂ ∂ ∂ ∂ ∂   


 

2
L

BP
k

R
y

ν
 ∂
 − −
 ∂ 

  (9) 

 

Multiplying Eq.(9) by 
1
γ
γ−

 and then subtracting the 

resulting equation from Eq.(8) give 
 

( )
L

2
k U V

x y1

γ γ

γ

 ∂ ∂
+ = ∂ ∂−   ( )

L T
2

k

k
y y1

ν γν
σγ

  ∂ ∂
+   ∂ ∂ −   

 

( )
T L

2
k

k
y y1

ν γν
σ γ

   ∂ ∂ + +    ∂ ∂−   

T L

k

k
1 y y
γ ν
γ σ

 ∂ ∂
+  − ∂ ∂ 

 

T L

k

k
y 1 y

ν γν
σ γ

   ∂ ∂
+ +     ∂ − ∂  

,

2

T T
U

1 y
γν ν
γ

   ∂
+ −    − ∂  



 

*
2

L
L

k
k

1 y
γ β ω ν
γ

  ∂  − −  − ∂   
BPR

1
γ
γ

+
−

 (10) 

 

After multiplying Eq.(10) by 
( )2

L

1
k
γ−

, the new transport 

equation for γ  can be obtained as follows: 
 

U V
x y
γ γ∂ ∂
+ =

∂ ∂
T

ky y
ν γν
σ

  ∂ ∂
+   ∂ ∂   
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( )
( )

2
T L

2
L k

1 k
k y y1

γ ν γν
σ γ

  − ∂ ∂ + +    ∂ ∂−   
 

( ) T L

L k

1 k
k y y

γ γ ν
σ
 − ∂ ∂

+  ∂ ∂ 
 

( )2 T L

L k

1 k
k y 1 y
γ ν γν

σ γ
 −  ∂ ∂

+ +     ∂ − ∂  
 

( )
,

22

T T
L

1 U
k 1 y
γ γν ν

γ
 −   ∂

+ −    − ∂  


 

( ) *
2

L
L

L

k1
k

k y
γ γ

β ω ν
  ∂−   − −  ∂   

( )
BP

L

1 R
k

γ γ−
+  (11) 

 
Re-arranging Eq.(11) yields 
 

U V
x y
γ γ∂ ∂
+ =

∂ ∂
T

ky y
ν γν
σ

  ∂ ∂
+   ∂ ∂   

 

( )
( )

2
T L

2
L k

1 k
k y y1

γ ν γν
σ γ

   − ∂ ∂  + +    ∂ ∂−   

 

T L

k

k
y 1 y

ν γν
σ γ

   ∂ ∂
+ +     ∂ − ∂  

 

,

2

T T
U

1 y
γν ν
γ

   ∂ + −     − ∂   


 

( ) *
2

L
L

L

k1
k

k y
γ γ

β ω ν
  ∂−   − −  ∂  

 

T L
BP

k

k R
y y

ν
σ

 ∂ ∂ − −  ∂ ∂   
 (12) 

  

Since 
( ) ( )2

L

1 1
k k
γ γ γ− −

=  with the aid of Eq.(6), Eq.(12) 

can be written as follows: 
 

U V
x y
γ γ∂ ∂
+ =

∂ ∂
T

ky y
ν γν
σ

  ∂ ∂
+   ∂ ∂   

 

( )
( )

T L
2

k

1 k
k y y1

γ γ ν γν
σ γ

   − ∂ ∂  + +    ∂ ∂−   

 

T L

k

k
y 1 y

ν γν
σ γ

   ∂ ∂
+ +     ∂ − ∂  

,

2

T T
U

1 y
γν ν
γ

   ∂ + −     − ∂   


 

( ) *
2

L
L

L

k1
k

k y
γ γ

β ω ν
  ∂−   − −  ∂  

 

T L
BP

k

k R
y y

ν
σ

 ∂ ∂ − −  ∂ ∂   
  (13)  

However, it is found that the second and third terms on the 
right-hand side of Eq.(13) can be combined into one term 
as follows: 
 

( )
T L

2
k

k
y y1

ν γν
σ γ

   ∂ ∂ +    ∂ ∂−   

T L

k

k
y 1 y

ν γν
σ γ

   ∂ ∂
+ +     ∂ − ∂  

 

=
2

T
2

k

k
y

νν
σ

  ∂
+   ∂ 

  (14)  

 
After substituting Eq.(14) into Eq.(13), Eq.(13) becomes 
 

U V
x y
γ γ∂ ∂
+ =

∂ ∂
T

ky y
ν γν
σ

  ∂ ∂
+   ∂ ∂   

 

( ) 2
T

2
k

1 k
k y

γ γ νν
σ

 − ∂+ +   ∂ 
,

2

T T
U

1 y
γν ν
γ

   ∂ + −     − ∂   


 

( ) *
2

L
L

L

k1
k

k y
γ γ

β ω ν
  ∂−   − −  ∂  

 

T L
BP

k

k R
y y

ν
σ

 ∂ ∂ − −  ∂ ∂   
 (15)  

 
Eq.(15) can be re-arranged to separate sink terms from 
source terms as follows: 
 

U V
x y
γ γ∂ ∂
+ =

∂ ∂
T

ky y
ν γν
σ

  ∂ ∂
+   ∂ ∂   

 

( ) 2
T

2
k

1 k
k y

γ γ νν
σ

 − ∂
+ ⋅ +   ∂ 

( ) 2

T
1 U
k y

γ γ
ν

 − ∂
+ ⋅   ∂ 

 

( )
2

L

L

k1
k y

γ γ
ν
 ∂−
 + ⋅
 ∂ 

( ) T L

L k

1 k
k y y

γ γ ν
σ
 − ∂ ∂

+ ⋅  ∂ ∂ 
 

( )
BP

L

1
R

k
γ γ−

+ ⋅  

,

22

T
U

k y
γ ν

 ∂
− ⋅   ∂ 



( ) *
L

L

1
k

k
γ γ

β ω
−

− ⋅  (16) 

 

However, it is found that 
( )2

L

1
k k

γ γγ −
=  with the aid of 

Eq.(5) and L

L

k1
k k

γ− =
+

. Therefore, all the source and 

sink terms in Eq.(16) can be grouped into the physical 
mechanisms involved with k  and Lk  separately as 
follows: 
 

U V
x y
γ γ∂ ∂
+ =

∂ ∂
T

ky y
ν γν
σ

  ∂ ∂
+   ∂ ∂   
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( ) 22
T

T2
k

1 k U
k yy

γ γ νν ν
σ

    − ∂ ∂ + + +       ∂∂     

 

( )
2

L T L
BP

L k

k1 k R
k y y y

γ γ νν
σ

    ∂− ∂ ∂  + + +   ∂ ∂ ∂   

 

*
,

2

T L
U k
y

ν β ω
 ∂ − −   ∂  



 (17)  

 
Finally, Eq.(17) can be generalized for unsteady three-
dimensional incompressible flow in terms of tensor 
notation as follows: 
 

D
Dt
γ
= T

j k jx x
ν γν
σ

  ∂ ∂
+   ∂ ∂   

 

( ) 2
2T

T2
k j

1 k S
k x

γ γ νν ν
σ

  − ∂ + + +    ∂   
 

( )
2

L T L
BP

L j j k j

k1 k R
k x x x

γ γ νν
σ

    ∂− ∂ ∂  + + +   ∂ ∂ ∂    

 

*
,

2
T LS kν β ω


− 





 (18)  

 
The physical meaning of each term on the right-hand side 
of Eq.(18) is listed as follows: 
 

• T

j k jx x
ν γν
σ

  ∂ ∂
+   ∂ ∂   

 is the diffusion term for 

γ . 

• ( ) 2
T

2
k j

1 k
k x

γ γ νν
σ

 − ∂
⋅ +   ∂ 

 and 
( ) 2

T
1

S
k

γ γ
ν

−
⋅  

are the source terms involving the physical 
mechanisms of laminar and turbulent diffusion, 
and production contributed from the turbulent 
kinetic energy during the transition process 
respectively. 

• ( )
2

L

L j

k1
k x

γ γ
ν
 ∂−
 ⋅
 ∂ 

, 

( ) T L

L j k j

1 k
k x x

γ γ ν
σ

 − ∂ ∂
⋅  
∂ ∂  

 and ( )
BP

L

1
R

k
γ γ−

⋅  

are the source terms involving the physical 
mechanisms of laminar diffusion, turbulent 
diffusion, and redistribution contributed from 
the laminar kinetic energy during the transition 
process respectively. 

• ,
( ) 2

T
L

1 S
k

γ γ ν−
⋅



 and *( )
L

L

1 k
k

γ γ β ω−
⋅  are the 

sink terms involving the physical mechanisms 
of production and dissipation contributed from 

the laminar kinetic energy during the transition 
process respectively. 

• ( )1γ γ−  is the ON/OFF switch, which is ON 
only in the transition zone. 

 
SHEAR-SHELTERING EFFECT  

In order to account for the shear-sheltering effect, the 
shear-sheltering function SSf  is used to damp or promote 
the influence of bypass transition mechanism by 
controlling the production term contributed from the 
turbulent kinetic energy, which is one of the main energy 
sources to promote bypass transition mechanism, as 
follows: 
 
( ) 2

SS T
1

f S
k

γ γ
ν

−
⋅ ⋅   (19) 

 
where the function SSf  was proposed by Walters and 
Cokljat (2008) in the following form: 
 

exp
2

SS SSf C
k
νΩ   = −    

  (20) 

 
which is adopted here without any modification in which 
case SSC  is the model constant and ij ij2Ω Ω Ω=  is the 

magnitude of mean rotation rate. Therefore, the final form 
of the new transport equation for γ  with the shear-
sheltering effect can be written as follows: 
 

D
Dt
γ
= T

j k jx x
ν γν
σ

  ∂ ∂
+   ∂ ∂   

 

( ) 2
2T

SS T2
k j

1 k f S
k x

γ γ νν ν
σ

  − ∂ + + +    ∂   
 

( )
2

L T L
BP

L j j k j

k1 k R
k x x x

γ γ νν
σ

    ∂− ∂ ∂  + + +   ∂ ∂ ∂    

 

*
,

2
T LS kν β ω


− 





 (21) 

  
The effect of the shear-sheltering function on the 
transition mechanism is demonstrated in Fig. 1 where, 
without the shear-sheltering effect, i.e. the function 

SSf 1= , the laminar flow will become turbulent rapidly 
because the free-stream turbulence is fully allowed to 
penetrate the boundary layer. Therefore, the presence of 
the shear-sheltering function SSf  in Eq.(21) is served to 
make the new γ -equation applicable to both natural 
transition and bypass transition (Juntasaro et al., 2013). 
 

OPTIMUM VALUES FOR MODEL CONSTANTS  
For the redistribution term BPR  from the laminar 

kinetic energy which is one of the main energy sources to 
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promote the bypass transition proposed by Walters and 
Cokljat (2008), the model constants ( ,BP critC , Cλ ) are 
optimized by tuning their values using the experimental 
data of T3A. The optimum value of ,BP critC  is found to 

be 4.0 as shown in Fig. 1 whereas Cλ = 0.87 is chosen 

because its corresponding line C dλ  properly intersects 

with the turbulent length scale curve Tλ  at the edge of 

boundary layer where d  is the normal distance to the 
nearest wall. 
 
MODEL IMPLEMENTATION 

The new γ  transport equation in Eq.(21) is 
implemented into our in-house CFD code of elliptic type 
which is developed based on the RANS equations and 
finite volume method. The new γ  transport equation is 
used in cooperation with the original Lk -equation 
proposed by Walters and Cokljat (2008) and the SST 
k ω−  turbulence model of Menter (1994). To bring the 
transition mechanism into effect, the production and 
destruction terms in the k − equation are controlled by 
weighting (multiplying) them with the intermittency factor 
γ  following the concept of Langtry and Menter (2009) 
and Menter et al. (2005). 
 
RESULTS 

In cases of T3B and T3A, the predicted results using 
the proposed model are compared with those of the Lk  
model of Walters and Cokljat (2008) and those of the 

Reθγ −  model of Langtry and Menter (2009) for the skin 
friction coefficient fC  in Figs. 2-3, the mean streamwise 

velocity in wall units U +  in Figs. 4-5, the turbulent 

kinetic energy normalized by free-stream velocity / 2
0k U  

in Figs. 6-7, and the Reynolds shear stress normalized by 

free-stream velocity / 2
0u v U′ ′−  in Figs. 8-9. 

 
CONCLUSION 

Based on basic physical mechanisms, the proposed γ
-equation in cooperation with the original Lk -equation of 
Walters and Cokljat (2008) and the SST k ω−   
turbulence model of Menter (1994) can accurately predict 
the mean streamwise velocity in the transition zone. For 
the skin-friction coefficient, turbulent kinetic energy and 
Reynolds shear stress, the proposed model has the same 
performance as the Reθγ −  model of Langtry and Menter 
(2009) which is the correlation-based transition model. 
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Figure 2. fC  for T3B. 

 
Figure 3. fC  for T3A. 

 
Figure 4. Mean streamwise velocity in wall units for T3B. 

 
Figure 5. Mean streamwise velocity in wall units for T3A. 

 
Figure 6. Turbulent kinetic energy for T3B. 

 
Figure 7. Turbulent kinetic energy for T3A. 

 
Figure 8. Reynolds shear stress for T3B. 

 
Figure 9. Reynolds shear stress for T3A. 
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