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This work involves the large-scale amplitude and fre-
quency modulation of the small-scale motions in fully-
developed turbulence of a high Reynolds number jet. The
scales responsible for the production of turbulent kinetic en-
ergy (large scales), and those responsible for its viscous dis-
sipation (small scales) are extracted from time series of hot-
wire signals, using a band-pass spectral filter. The top-down
interaction between the turbulent scales is then examined.
We show that the strength of the large-scale fluctuations
affect non-linearly the amplitude of the small-scale sig-
nal. Furthermore, the higher frequency components within
the small-scale signal exhibit stronger amplitude modula-
tion, which evidences frequency modulation. Analogies and
dissimilarities with turbulent flows other than jets are dis-
cussed.

INTRODUCTION
Many recent studies have shown the existence of a

clear relationship between the large-scale motions and the
small-scale motions in turbulent boundary layers (1) (2)

(3). The extent of this scale interaction was later quantified,
based on correlation coefficients (4). However, the corre-
lation coefficient exhibits a linear trend with the skewness
of the raw signals, and therefore does not represent a tool
independent of the data that is analyzed (5). To overcome
this limitation, the use of two-point amplitude modulation
correlation was suggested (6). Although an interaction be-
tween the scales could be quantified eventually, the correla-
tions proposed did not take into account the different con-
tributions of the large-scale fluctuations on the amplitude
modulation. Recently, this gap was filled following the de-
velopment of an original approach based on signal binning
(7). Furthermore, independently of an amplitude modula-
tion, a frequency modulation of the small-scale motions was
ascertained too (7).

Despite the interaction between the large-scale and
small-scale motions has recently aroused a deep interest,
shear flows other than boundary layers have been scarcely
tackled in literature. Only a mixing layer at a low Reynolds
number has been investigated so far (8). In addition, fre-
quency modulation of the small-scale motions is of novel
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finding, thus worthy to be investigated more in details.
Therefore, the main goal of the present work is to ex-

tend the work on amplitude and frequency modulation to
jets, and compare the results to those for boundary layers
and mixing layers reported in the literature. In particular,
at the jet centerline, the mean shear vanishes, which is an
important difference with respect to other flows considered
so far. A secondary goal of this study is to develop a math-
ematical approach that can provide a further insight into the
physics behind the scale interaction, with a particular focus
on frequency modulation (7).

EXPERIMENTAL DATASET
Velocity signals were measured in a circular jet in air

using a CTA. Data were recorded at a downstream distance
of x/D = 70 from the nozzle, in the self-similar region over
a range of radial positions. The governing non-dimensional
numbers at the nozzle, whose diameter is D = 8 mm, can be
estimated as Re = 6.6 ·104 and Ma = 0.37. The jet center-
line velocity Uc at x/D = 70 is 10.55 m/s, and the jet’s half
width at that location is 52 mm. The measurements were
performed with an overheat adjustment of 0.7, in order to
keep the temperature of the sensor at a constant tempera-
ture of 220◦C. The sensor was a Dantec 55P11. The radial
locations of measure ranged from 0 to 0.2 non-dimensional
radii, where the normalization was done with respect to the
jet’s half width. The range of interest was deliberately re-
stricted to the proximity of the centerline position in order
not to enter the intermittent region of the jet. The feedback
control of the wire temperature was established through a
Dantec Dynamics 56C17 CTA Bridge.

From the following relationship, an estimate of the dis-
sipation rate in jets is provided (9):

ε ≈ 0.015
U3

c
r1/2

(1)

where Uc is the centerline velocity and r1/2 is the jet’s half-
width. Based on the dissipation rate at the mentioned mea-
surement location, the size of the Kolmogorov scales is es-
timated to be around 60 µm, which corresponds to a fre-
quency of 30 kHz at the jet centerline when employing
Taylor’s hypothesis. Since for frequencies higher than 22
kHz the measurement noise dramatically affects the signal,
a low-pass filtering at this cutoff frequency has to be ap-
plied. As a consequence, the minimum size of the eddies
that the measurement can resolve is estimated at 90 µm,
corresponding to about 1.5 Kolmogorov length scales.

MATERIAL AND METHODS
In Figure 1, the velocity power spectrum is shown. The

-5/3 trend in the inertial range of the energy cascade devel-
ops over two decades: this demonstrates the highly turbu-
lent nature of the flow, and an adequate separation of the
large scales, and small scales. Moreover, the large scales,
which are dominated by turbulent kinetic energy, can be
clearly distinguished from the small scales that are domi-
nated by dissipation. In Figure 1, we present the two fre-
quency bands of the power spectrum, which are taken to be
representative of the large-scale signal (red) and the small-
scale signal (green). In particular, the low-frequency signal
contains scales that range between 2λ and L, where λ is the

size of the Taylor length scale (2.15 mm), and L the size of
the eddies comparable to the flow scale (43 mm). Here, an
estimate of the Taylor length was obtained from the given
relationship (10):

λ = u′
√

15
ν
ε

(2)

where u′ is the RMS of the axial velocity. In the fully-
developed region of a jet flow, and for the radial range ex-
plored in the present work, we can assume u′ ≈ 0.25 ·Uc
(11). Moreover, L was estimated as follows:

L∼ η ·Re3/4 (3)

Thus, the high-frequency signal contains scales from 1.5η
and 5η , where η is the Kolmogorov scale. The physical
meaning of the ranges chosen for the scale separation is
confirmed by analysing the dissipation spectrum, shown in
Figure 2. The two pass-band ranges are on the two different
tails of the bell.

The frequency bands representative of the large and
the small scales were thus determined. Later, a spectral
band-pass filter allowed to separate the large-scale and the
small-scale contributions from the original broadband ve-
locity signal.

RESULTS AND DISCUSSION
A portion of the velocity signal is presented in Figure 3,

together with the corresponding large-scale and small-scale
components, obtained as described in the previous section.
The signal was acquired at the centerline position, therefore
far from the mean shear region. Even without computing
any statistics, the small-scale signal fluctuations (green) are
clearly broader when the large-scale fluctuations (red) are
positive. On the other hand, the small-scale signal becomes
much flatter for negative fluctuations of the large-scale com-
ponent. Evidently, the viscous scales are affected by the
large-scale motions, and, indeed, the scales responsible for
the production of the turbulent kinetic energy have a role
in modulating the amplitude of the dissipative scales. This
trend is more evident in Figure 4, where the probability den-
sity functions (pdfs) of the small-scale signals conditioned
on the sign of the large-scale fluctuations are presented. In
particular, only the large-scale fluctuations higher in abso-
lute value than the large-scale signal rms have been taken
into consideration in the estimate of the pdfs of the small-
scales signal fluctuations. The variance of the pdf condi-
tioned on the positive fluctuations of the large-scale signal
is higher than the one for the negative large scale fluctua-
tions: this clearly demonstrates that the presence of large
eddies has a modulating effect on the small-scale turbulent
activity.

Nevertheless, the variance of the conditioned pdf does
not provide a detailed dependence between the strength
of the large-scale signal, and the amplitude modulation of
the small-scale motions. Hence, a mathematical proce-
dure similar to that detailed in (7) was developed, and ap-
plied to the present experimental dataset. In the following,
we refer to u∗L as the fluctuations of the large-scale sig-
nal non-dimensionalized by the average centerline velocity
Uc. Therefore, u∗L = uL/Uc. The aforementioned procedure
consists of the following steps:
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i. Equally spaced bins with a spacing of 0.05 ranging
from u∗L =−0.4 to u∗L = 0.4 were created. A bin spac-
ing of 0.05 was chosen as a balance between the bin
size, and the number of samples within each bin. With
such a size of bin, the minimum amount of samples
falling within each bin was higher than 1000.

ii. Each large-scale sample corresponds to a small-scale
sample at the same instant in time.

iii. Each sample of the small-scale signal was included in a
group, corresponding to one of the u∗L bins, effectively
creating a single new time series for each u∗L bin.

iv. The variance of the samples contained in each group
was then computed, and this small-scale variance rep-
resents the amplitude of the small scales conditioned
on the strength of the respective large-scale signal, σuL

.
The variance was non-dimensionalized by the variance
of the entire small-scale fluctuations at the centerline
σc, therefore, σ∗uL

= σuL
/σc.

Furthermore, the approach by Ganapathisubramani et al.
was applied too (7), in order to allow a comparison. A
binning with a spacing of 0.05 ranging from u∗L = −0.4
to u∗L = 0.4 was again created for the large-scale fluctu-
ations. Moreover, in compliance with the algorithm, the
time series of both the large- and the small-scale fluctua-
tions were divided into segments of 100 samples each (cor-
responding to 5 · 10−4 s). This segment size was chosen
as the ratio between the acquisition frequency and 2001Hz,
a frequency intermediate between the large and the small-
scale motions. With such a size of bin and horizontal seg-
ment, the minimum amount of samples falling within each
bin was 400. Figure 5 shows the results obtained after ap-
plying the present procedure, and the literature procedure,
respectively, to the signal acquired at the centerline. Evi-
dently, although different, the two algorithms produced sim-
ilar results. The small deviation between the two plot lines
is probably due to a lack of statistical convergence in the
procedure from literature. The variance over one segment
(blue line) does not converge to the variance computed over
all the small-scale samples (red line). The lack of statistical
convergence creates an offset between the two plot lines.
Even if not shown here, this offset is witnessed to increase
for decreasing sizes of the horizontal segments, as expected.
The amplitude modulation effects are linear for fluctuations
of the large-scale signal close to zero. Nevertheless, the in-
teraction between the large- and the small-scale motions is
generally non-linear. Similarly, analogous graphs are ob-
tained over the range of different radial positions from 0
to 0.2 non-dimensional radii. In Figure 6, the two proce-
dures are applied to a signal taken at the radial location
of 0.2 non-dimensional radii. Even if at negative fluctu-
ations of the large-scale signal the plot line is flatter, the
trend is clearly the same as at the centerline. This is consis-
tent with (3), where the correlation coefficient between the
large-scale signal, and the envelope of the small-scale sig-
nal are observed to remain constant across different radial
positions.

Moreover, the frequency modulation of the small-scale
motions is checked. In particular, we want to show that the
amount of amplitude modulation depends on the frequency
of the small-scale signal. In this study, an approach differ-
ent to that proposed in literature ((7)) is used. Firstly, the
frequency band representative of the dissipative scales in
the power spectrum is further subdivided into four smaller
frequency bands of equal sizes, as shown in the inset of Fig-
ure 7. Secondly, the procedure described by Ganapathisub-

ramani et al. (7) for the estimate of the amplitude mod-
ulation is applied to the four different small-scale signals
(Figure 7). Additionally, the resulting values of the vari-
ance are non-dimensionalized by the respective variances at
zero u∗L to compensate for differences in the energy con-
tained in the frequency bands. For every signal, the vari-
ance at zero is calculated as an average between the two
variances of the small-scale fluctuation for 0 < u∗L < 0.05
and −0.05 < u∗L < 0. In Figure 8, the results are presented.
As the large-scale signal exhibits positive fluctuations, the
highest normalized variance is always obtained for the sig-
nal of the highest frequency band (black). In general, when
the Kolmogorov scales are approached, the rate of ampli-
tude modulation with the strength of the large-scale signal
increases. As a matter of fact, the slope of the positive
branches of the plot lines rises for signals corresponding
to increasing frequencies. In other words, the activity of the
large-scale motions stimulates the viscous scales of the tur-
bulence more in frequency intervals next to the upper limit
of the dissipative band, than at the lower frequencies. A
similar trend was observed at different radial positions, for
non-dimensional radii ranging between 0 and 0.2, even if
not shown here. These results have some physical implica-
tions. The activity of the large-scale motions modulates the
amplitude of the small-scale signal in various ways, depend-
ing on the frequency of the small-scale signal (frequency
modulation). As a consequence, the behaviour of the large
scales alter the shape of the velocity power spectrum lo-
cally. In particular, the small-scale frequency band becomes
flatter for positive fluctuations of the large-scale signal, and
steeper for negative fluctuations. In order to show this, the
following procedure was implemented.

i. Firstly, the small-scale signal was divided into smaller
segments of 200 samples each, corresponding to 10−3

s.
ii. A hamming filter was applied to the segments of the

small-scale signal.
iii. From all the filtered segments, we selected only those

with a wanted u∗L in the corresponding large-scale sig-
nal.

iv. Ten-by-ten, the selected pieces of the small-scale sig-
nal were juxtaposed, thus generating new signals.

v. The power spectra for each of these ten-segments sig-
nals were calculated. Additionally, the average power
spectrum was computed. Finally, the obtained aver-
age power spectrum was normalized by its value at
kη = 10−0.6, to compensate for the differences in the
energy content.

The detailed scheme was applied for three different u∗L. The
results are shown in Figure 10. The power spectrum was
firstly conditioned on representatives of the large-scale fluc-
tuations ranging between 0.3 and 0.35 (red line), then be-
tween−0.3 and−0.35 (green line), and, eventually, for ran-
domly selected segments of the small-scale signal (uncondi-
tional u∗L, blue line). As espected, the slope of the green line
(negative fluctuations) is the highest, whereas the slope of
the red line (positive fluctuation) is the lowest. Again, this
proves that the amplitude modulation of the small-scale sig-
nal is frequency dependent, and that the degree of amplitude
modulation increases at higher frequencies. The described
scenario can be explained in terms of energy cascade mech-
anism. Positive fluctuations of the large-scale signal pro-
duce additional turbulent kinetic energy, that is later dissi-
pated by the increased activity of the viscous scales.
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The correlation coefficient (R) between the large-scale
and the envelope of small-scale signal reinforces the above
hypothesis. The envelope of the small-scale signal is cal-
culated following the approach by Mathis et al. (4). The
Hilbert transform was firstly applied to the small-scale sig-
nal. For the envelope, we filtered the Hilbert-transformed
signal using the same spectral filter as for the large-scale
fluctuations. Additionally, we calculate the correlation co-
efficient R for different mutual delays of the two signals.
As a convention, a positive time shift is equivalent to de-
laying the large-scale signal. In Figure 9, the result of this
procedure is shown. The maximum correlation coefficient
(R = 0.65) is found for a negative shift of 1.8 · 10−4 s, al-
most equal to the Kolmogorov time scale τη = 2 · 10−4 s.
Therefore, a negative shift implies a delay in the top-down
interaction. This delay can be regarded as the time nec-
essary by the turbulent kinetic energy to transfer from the
large-scale to the dissipative-scale motions.

These findings could be put in relationship with the ev-
idence of scale interactions found in other shear flows, such
as boundary layers, and mixing layers. In boundary layers, a
behaviour analogous to the one presented here is reported in
proximity to the wall (u∗L > 0, σ∗uL

↑) (7). On the other hand,
moving away from the wall (i.e., in the wake region), the op-
posite phenomenon is reported (u∗L > 0, σ∗uL

↓). With regard
to mixing layers, Buxton shows that a damping effect is ex-
erted on the small-scale fluctuations by the large-scale pos-
itive fluctuations (12). In other words, high-frequency ve-
locity fluctuations strengthen on average for negative values
of the large-scale signal (u∗L > 0, σ∗uL

↓), similar to the wake
region of the turbulent boundary layer. Evidently, both the
type of the flow investigated, and the position where the
acquisition is performed play a decisive role in the small-
scale amplitude modulation. The different ways in which
the large scales organize themselves may explain the afore-
mentioned different behaviours (3).

Recently, the dissipation of more than a half of the
turbulent kinetic energy was observed to occur in regions
of intense shear, between pairs of tube vortices (13) (14).
According to these investigations, the activity of the small
scales is exalted in the layer between travelling large eddies,
which has been argued to be a universal feature of turbulent
motions (15). We expect that regions of sharp gradients in
the large-scale velocity fluctuations might be characterized
by a high energy content at the viscous scales. Therefore,
rather than the large-scale fluctuations, the large-scale ve-
locity gradients can play a determinant role in modulating
the viscous scales. In this case, the relationship between
the large-scale velocity gradients and the small-scale signal
could be univocal, independently of the turbulent flow un-
der investigation.

CONCLUSIONS
In this study, we examined the top-down interaction be-

tween the large, and the small-scale motions in the far field
turbulence of an air jet, at high Reynolds number. Time
series of hot-wire signals were regarded as space resolved
data, after applying the Taylor’s hypothesis. The velocity
signals were decomposed into large-scale and small-scale
contributions, using a spectral filter. The impact of the
large-scale components on the viscous scales was investi-
gated. The experimental dataset was evaluated through sev-
eral different metrics, both existing and newly developed.
It was found that the small-scale motions are modulated

both in amplitude and frequency. The described modulat-
ing behaviour was ascertained for different radial positions
within the jet. Using an approach analogous to that shown
by Ganapathisubramani et al. (7), we quantified the nonlin-
ear contributions of the large-scale fluctuations to the am-
plitude modulation. Moreover, a spectral decomposition of
the small-scale signal evidenced that the amplitude modula-
tion is frequency dependent. In particular, the viscous scales
are more amplitude modulated when approaching the Kol-
mogorov scale.

Although the literature on scale interaction is limited,
the present results on jets could be related to the findings
over different turbulent flows. A behaviour similar to that
here shown was evidenced in boundary layers, in proxim-
ity to the wall. But, moving towards the outer region of the
boundary layer, a phase reversal was reported. A similar
phase reversal was observed in mixing layers. This dif-
ference in the scale coupling may be explained in terms
of large-scale organization. Evidently, the modulation of
the small-scale signal is strongly flow dependent, and it
even varies between different positions within the same flow
(e.g., in turbulent boundary layers). This suggests that the
scale interaction is intimately related to the way the large-
scale structures arrange themselves within the flow.

Nevertheless, the top-down interaction between scales
was espected to be independent of the flow under investi-
gation. Therefore, it is probably deceptive to directly relate
the small-scale to the large-scale signal. In agreement to the
recent literature, shear regions with high velocity gradients
are responsible for the largest amount of energy dissipation,
hence small-scale activity. In future works, the interaction
between large-scale velocity gradient and the small-scale
signal should be explored. In the top-down interaction be-
tween scales, we espect to find a common behaviour in all
the turbulent flows.
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Figure 1. Power spectrum of the signal taken at the jet
centerline (x/D = 70)

Figure 2. Dissipation spectrum of the signal at the jet cen-
terline, D11 = k2 ·P11

Figure 3. Velocity signal (blue), small-scale (green), and
large-scale (red) components of the velocity signal.

Figure 4. Pdf of the small-scale fluctuations, conditioned
on the positive (solid line), and negative (dashed line) fluc-
tuations of the large-scale signal.
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Figure 5. Variance of the pdf of the small-scale signal,
conditioned on the fluctuations of the large-scale signal.
The signal is acquired at the centerline position, at x/D =

70. The two procedures applied are described in the Result
section (red line), and in (7) (blue line).

Figure 6. Variance of the pdf of the small-scale signal,
conditioned on the fluctuations of the large-scale signal.
The radial location of the measure is 0.2 non-dimensional
radii. The two procedures applied are described in the Re-
sult section (red line), and in (7) (blue line).

Figure 7. In the inset, the small-scale range of the power
spectrum is divided into four different frequency bands, evi-
denced through different colours. In the picture, small-scale
signals obtained from the four different frequency bands, as
evidenced in the inset.

Figure 8. Normalized variances of the pdf of the four
small-scale signals, conditioned on the fluctuations of the
large-scale signal. The colours correspond to the frequency
band (Figure 7) considered for the filtering.

Figure 9. Correlation coefficients R for different values of
the relative shift between the signals correlated, after apply-
ing the approach by Mathis et al.(4).

Figure 10. Power spectra of conditionally selected seg-
ments of the small-scale signal. The red line is obtained for
u∗L ranging between 0.3 and 0.35, the green line between
−0.3 and −0.35, and the blue line is obtained for uncondi-
tional u∗L (randomly selected segments of the small-scale
signal). The scheme adopted in computing the different
power spectra is detailed in the Result section.
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