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ABSTRACT
The Reynolds averaged Navier-Stokes equations repre-

sent an attractive alternative to direct numerical simulation
of turbulence due to their simplicity and reduced computa-
tional expense. In the literature it is well established that
structure of Reynolds averaged turbulence models are fun-
damentally limited in their ability to represent the turbulent
processes - introducing epistemic model-form uncertainty
into the predictions. Sensitivity analysis and probabilis-
tic approaches have been used to address these uncertain-
ties, however there is no well established framework within
the turbulence modeling community to quantify this impor-
tant source of error. This work introduces a new approach
for addressing epistemic uncertainty which is then demon-
strated for the ow over a 2D transonic bump configuration.
The well known SST k-ω turbulence model is considered.
The reported quantities are the wall pressure, separation lo-
cation, and reattachment location along the bottom wall of
the domain. The results show the new method is able to
introduce bounding behavior on the numerical and experi-
mental predictions for these quantities.

INTRODUCTION
Computational fluid dynamics (CFD) is widely used

by engineers in a range of applications, providing a wealth
of information about the flow characteristics. Despite this
ability to produce comprehensive and detailed information,
engineering performance is typically measured using only
few predicted values, for example maximum temperature
or drag coefficient . These parameters require accurate
characterization and are critical for effective design. These
predicted quantities of interest (QOI) are often very sensi-
tive, making the proper characterization of the underlying
physics important for reliable and safe product design.

Directly solving the Navier-Stokes equations, which
govern the behavior of fluid motions, is largely intractable
for many problems of interest. The large separation of spa-
tial and temporal scales for complex flows renders the com-
putational cost of these simulations unaffordable. A sim-
plified set of governing equations, the Reynolds averaged
Navier-Stokes (RANS) equations, are typically solved al-
though they require additional relations ( turbulence mod-
els) to close the problem.

Reynolds averaged models maintain a wide spread use

because of their limited computational expense and ease-
of-use. The main criticism is their structural inability to
represent fundamental turbulence processes – for example
the energy transfer within the inertial range – and there-
fore, the lack of universality in their formulation. Turbu-
lence modelers and practitioners typically resort to tuning
and calibration to experimental datasets to improve the pre-
diction capability of specific closures, thus using the mod-
els merely as sophisticated interpolations.1 These simpli-
fied physical models introduce epistemic model-form un-
certainty into simulations, and to date there is no well es-
tablished framework to quantify its effect on the resulting
predictions.

A fundamentally new approach is required to objec-
tively assess the ability of turbulence models to credibly
estimate quantities of interest in engineering flows. The
present work represents a first step towards the creation of
error models to identify and characterize inaccuracy in the
physical assumptions used, borrowing ideas from error es-
timates in numerical analysis. The driving principle is that,
in general terms, it is easier to define bounds for a quantity
instead of characterizing it precisely: bounds can be based
on theoretical reasoning or fundamental properties and can
be defined even without a detailed knowledge of the under-
lying physical process. The introduction of bounds as op-
posed to precise statements is the main new component in
this proposal and obviously goes well beyond the character-
ization of turbulence. The traditional approach to modeling
is based on the idea of approximation: say where the answer
is, and then try to minimize the bias. The present approach
of bounding is exactly the opposite: say where you know the
answer is not and then try to tighten the range.

In the present context, we start by identifying the basic
hypotheses used in the model formulation and to construct
local sensors based on computable quantities to track their
validity: in the absence of violations the computations must
be considered valid. On the other hand, the identification of
flow conditions not consistent with the initial assumptions
must trigger the injection of uncertainty. These will nega-
tively affect the confidence in the end results.

The article is organized as follows: section II illustrates
the basic idea and section III describes the transonic bump
flow being investigated and compares a standard RANS
computation with the experimental results. Section IV dis-
cusses the uncertainties inherent to turbulence modeling and
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motivates a novel frame- work for addressing model-form
uncertainty. Finally section V develops the new methodol-
ogy and compares the results to the experiment and nominal
RANS computations.

METHODOLOGY
Consider the classical example of the prediction of

aerodynamic loads on a transonic airfoil. The application of
conventional turbulence models will likely lead to the situa-
tion illustrated in Fig. 1, where three different models were
used. These simulations do not provide any explicit infor-
mation on the accuracy of the models, and the results are
typically interpreted using previous experience on a subjec-
tive basis. It is worth noting that the three models reported
in Fig. 1 do not bound the actual solution and the results
might be incorrectly biased.

Our objective is not to develop a new turbulence clo-
sure, but to revisit the limitations of well-established RANS
models, and to evaluate if they operate outside the intended
range of applicability. As a simple introductory example,
it is well known that eddy viscosity models for high speed
flows are inaccurate in predicting the turbulence amplifica-
tion across shock waves.3 New models have been proposed
to address this limitation,4 typically by introducing addi-
tional hypotheses and altering the behavior of the original
model. In the present context, it is quite simple to detect
the region(s) where the turbulence production rate might
be erroneous (shock detection is fairly straightforward) and
therefore define the sensor: this is schematically illustrated
in Fig. 2.

As per the determination of the applicability bounds
of turbulent production it is logical to consider the shear-
induced production as an upper limit to the actual turbu-
lence generation.4 The lower bound can be assumed to
be no production. At this point a turbulence-production-
error sensor can be formulated and used in actual computa-
tions. The presence of a shock wave will activate the sensor
and the uncertainty introduced locally will be propagated
through the computation. This will lead to potential uncer-
tainty in the output quantity of interest (as illustrated in Fig.
2).

The impact of the inaccuracy in the assumption of
the turbulence/shock interaction might be very small, and,
therefore, in spite of a clear limitation of the original model,
our confidence in the predictions should remain high. On
the other hand, an unacceptably low degree of confidence
(very large error bars in Fig. 2) will provide rationale for
improving the definition of the bounds or for the adoption
of a more sophisticated closure.

RANS modeling
Almost all RANS closures are constructed to estimate

the Reynolds stress tensor Ri j, defined as u′iu
′
j or ũ′′i u′′j for

incompressible and compressible flow, respectively, with
the appropriate use of Reynolds or Favre decompositions
ui = ui +u′i = ũi +u′′i . Most engineering models rely on the
eddy-viscosity hypothesis that assumes that the stress Ri j
is linearly related to the mean rate-of-strain Si j through a
scalar eddy-viscosity νt , i.e.,

Rev
i j =

2k
3

δi j−2νtSdev
i j , (1)

Figure 1. Pressure distribution on a transonic airfoil.
Three Reynolds Averaged models are used to predict the in-
teraction between the boundary layer and the shock on the
upper surface of the airfoil. Remark: there is no guarantee
that the three predictions bound the actual true solution!

Figure 2. (Left) A shock-detection sensor identifies a re-
gion where the model assumptions might be invalid; in this
case the turbulence production/dissipation across a shock
wave. (Right) Bounds for the corresponding physical pro-
cess are defined and uncertainty is injected locally leading
to error bounds on the predictions.

where Sdev
i j is the deviatoric (trace-free) part of the strain-

rate tensor Si j = (∂ jũi + ∂iũ j)/2. The superscript “ev” de-
notes that this assumed stress-strain relationship in Eq. (1)
is used only in eddy-viscosity models, including mixing-
length models (where k is neglected) as well as one-,
two- and three-equation models such as, for example, the
Spalart-Allmaras, k−ω , and V2F models. These models
differ in how they compute k and νt , for example, in the
commonly used k−ω model transport equations are solved
for k and ω and then νt = Cν k/ω . These transport equa-
tions include model coefficients that are typically specified
by matching known asymptotic behaviors, e.g. the decay of
isotropic turbulence [6].

Eddy viscosity models rely on two modeling layers:
the hypothesized stress-strain relationship in Eq. (1) and
the equations assumed to represent the terms therein. Thus,
there are multiple potential sources of errors and it has been
traditionally very difficult to identify the dominant cause of
discrepancies in complex problems. It is worth mentioning
that in addition to coefficients used in the models, e.g. Cν in
the k−ω model, the transport equations and the stress-strain
hypothesis imply a functional relationship that it is not valid
in general. For example, in steady state flows, the turbulent
kinetic energy production typically balances dissipation and
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Figure 3. Barycentric map: illustration showing how the
state x given by the base-model is perturbed towards the
limiting state of two-component turbulence.

both these processes require modeling.
While much past work on UQ of RANS models has fo-

cused on characterizing the sensitivity of the predictions to
the model coefficients [7, 8], this approach neglects any er-
rors introduced in the physical assumption used to construct
the assumed model-form, such as Eq. (1).

In the present work we take the opposite approach: we
focus directly on the hypothesized stress-strain relationship
in Eq. (1) and inject uncertainty directly into it to quantify
if there is any fundamental bias induced in the predictions.
The underlying RANS model that produces estimates of k
and νt , and thus through Eq. (1) Ri j , is viewed as a black
box, merely returning the Reynolds stress as a function of
the velocity field ui or ũi (for Reynolds and Favre-averaged
equations, respectively).

It is important to note that if we view a RANS model
as producing an estimate Ri j , then the whole UQ machin-
ery and ideas presented below apply to any RANS model,
including those not based on the eddy-viscosity assumption.

Ri j decomposition
The focus of the present work is to model the uncer-

tainty in the predicted Ri j, in a way agnostic to the RANS
model used. To this end, it is useful to decompose the mod-
eled Reynolds stress into factors determining its amplitude,
shape, and orientation [9]. This is done by introducing the
anisotropy tensor ai j as

ai j =
Ri j

2k
− 1

3
δi j .

Realizability of the Reynolds stress [10] requires that ai j ∈
[−2/3,4/3] for i= j and that ai j ∈ [−1,1] for i 6= j. Further-
more, an eigen-decomposition of the (symmetric trace-free)
anisotropy tensor yields

aikvkl = vikΛkl ,

where vi j is the matrix of orthonormal eigenvectors and
Λkl is the diagonal matrix of eigenvalues λl satisfying
λ1+λ2+λ3 = 0. Multiplication of v jl from the right yields
ai j = vikΛklv jl and thus the Reynolds stress produced by the
RANS model can be decomposed as

Ri j = 2k
(

1
3

δi j + vikΛklv jl

)
. (2)

Note that the amplitude, shape, and orientation of the ten-
sor are directly controlled by k, the eigenvalues λi, and the
eigenvectors vi j , respectively.

The eigen-decomposition of ai j is useful to separate
the shape and the orientation of the Reynolds stress tensor
from each other, but also to directly enforce the realizability
constraints on ai j through the barycentric map [11]. Con-
sider an equilateral triangle in two dimensions defined by
the three corners x1c, x2c and x3c, where x = (x,y) is the co-
ordinate in this space. Then x = x1c(λ1−λ2)+ x2c(2λ2−
2λ3)+ x3c(3λ3 + 1) defines a linear mapping between the
three eigenvalues λl and the coordinates x. This mapping,
together with the requirement that the sum of the eigenval-
ues is zero, is an invertible one-to-one mapping x = Bλ .

Perturbed R∗i j
To model errors in the underlying RANS model per-

turbations are injected into the decomposed Reynolds stress
defined in Eq. (2). Thus

R∗i j = 2k∗
(

1
3

δi j + v∗ikΛ∗klv
∗
jl

)
, (3)

where k∗= k+∆k is the perturbed turbulence kinetic energy
and Λ∗kl is the diagonal matrix of perturbed eigenvalues λ ∗l .
The perturbed eigenvector matrix is defined as v∗i j = qikvk j
where qik is an orthonormal rotation matrix. Note that there
are 6 degrees-of-freedom in these perturbations: one for the
amplitude, two for the shape (since the sum of the eigenval-
ues is zero), and three for the orientation (since the eigen-
vectors are orthonormal). The perturbed eigenvalues are
defined implicitly through the coordinates in the barycen-
tric map. In other words, λ ∗l = B−1x∗ with the perturbation
defined in the barycentric map.

There is an implied spatial variation in these perturba-
tions. Most obviously, there is no reason to believe that ∆k
should be constant in space; it is much more reasonable to
suppose that the ∆k error in the turbulence model is strongly
varying in space, but with a spatial dependency clearly
connected to the modeling assumptions and the underly-
ing flow structures. For example, errors in the Reynolds
stresses computed in attached boundary layer are likely to
be strongly correlated to the wall distance.

For the eigenvalues determining the shape of the
Reynolds stress tensor, the perturbation has both a mag-
nitude (the distance |x∗ − x|) and a direction within the
barycentric map, both of which could vary in space. The
issue of how to specify the spatial variation of these per-
turbations (amplitudes, directions, etc) is very important,
but not discussed in detail in the present manuscript. The
focus here is on presenting the general uncertainty injec-
tion framework and on applying it to simple test cases in
which it is quite simple to identify where the modeling as-
sumptions might be incorrect. The further objective of the
present work is to illustrate how the injected uncertainties
have physical meaning and interpretations, and also to show
how this injection affects and envelopes the predictions.

As part of this objective, we consider perturbations
in the barycentric map in only three directions: towards
each of the three corners of the triangle x1c, x2c and x3c,
representing the limiting states of one-, two- and three-
component (isotropic) turbulence. The perturbations are de-
fined through the distance δ of movement towards the tar-
get corner. Thus the perturbed location in the barycentric
map is x∗ = x+ δ (xt − x), where subscript t denotes the
target state, illustrated in Fig. 3 for xt = x2c and δ = 0.5.
With the linear map B, we have the perturbed eigenval-
ues λ ∗ = B−1x∗ = (1− δ )B−1x + δB−1xt = (1− δ )λ +
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Figure 4. Pressure contours of the nominal condition Del-
ery transonic bump

δB−1xt. Taking the three corners x1c, x2c and x3c as
the target states, we have B−1x1c = (2/3,−1/3,−1/3)T ,
B−1x2c = (1/6,1/6,−1/3)T and B−1x3c = (0,0,0)T .

It is instructive to investigate how the perturbation of
the shape of the Reynolds stress tensor, i.e., the eigenval-
ues or the position in the barycentric map, affect the actual
Reynolds stress. If we consider no perturbations on the am-
plitude or orientation (i.e., k∗ = k and v∗i j = vi j), then the
anisotropic (or deviatoric) part of the perturbed Reynolds
stress in Eq. (3) becomes

R∗,dev
i j = 2kvik

[
(1−δ )Λkl +δΛ(t)

kl

]
v jl

= (1−δ )Rdev
i j +δ 2k vikΛ(t)

kl v jl , (4)

where Λ(t)
kl is the diagonal matrix of the three target

eigenvalue states B−1xt. Perturbations towards the three-
component (isotropic) state simply reduce the modeled
shear stresses proportionally to δ , i.e. they represent a bias
towards lower shear stress.

DELERY BUMP
To test the framework in a more physically com-

plex case (transonic flow, shock-boundary layer interaction,
streamline curvature, separation) we investigate Delery’s
Case C [22]. Calculations are performed on a mesh contain-
ing 280 x 100 elements in the streamwise and wall-normal
directions, respectively, and the near-wall grid is designed
to give y+ of order 1 for the first line of cells. The compu-
tational domain extends upstream of the start of the bump
(Fig. 4) so that a uniform inflow condition is used and
boundary layers develop along the walls. The extent up-
stream is specified so the boundary layer at the start of the
bump geometry coincides with the experimental boundary
layer height at this location. Adiabatic wall boundaries are
applied along the top and bottom of the domain, while sym-
metry conditions are used in the spanwise directions.

The distribution of Mach number over the bump is
reported in Fig. 4. The inflow conditions correspond to
M = 0.6 and the flow becomes supersonic (M = 1.4) over
the bump, forming a curved shock bridging the entire chan-
nel. This in turns leads to a strong interaction between the
shock and the bottom wall boundary layer, creating a dis-
tinctive lambda shock structure and a separation bubble at
the foot of the bump.

The computations are carried out using the baseline
SST closure and perturbations towards the three corners
of the barycentric maps for different combinations of am-
plitude (δ ) and marker. As in the duct problem both the
whole domain and wall-distance based markers are used.
A dc = 0.006m is used for the wall-distance marker, chosen
because this is the height of the bottom wall separation bub-
ble in the baseline solution. The results are summarized in
Fig. 6 in terms of pressure and shear stress distributions on
the lower wall. The results once again confirm the general

Figure 5. Wall pressure profile with experimental data
(symbols) and the nominal RANS computation (line). The
inset image shows Mach number contours.

enveloping behavior and sensitivity to the choice of marker,
although qualitatively the different choices (uniform versus
wall-distance based) lead to similar results.

More quantitative results are extracted by analyzing the
length of the separation bubble and how it is affected by the
different markers. In Fig. 7 the streamlines are reported
while the actual location of the separation and the extent of
the bubble are presented in Table 1.

The perturbations towards x1c and x2c bias the so-
lution towards a smaller separation-bubble by biasing the
Reynolds stress tensor towards states with higher shear
stress.

CONCLUSIONS
Uncertainty quantification of Reynolds-averaged

Navier-Stokes closures is tackled using a physics-based
perturbation approach that aims at enveloping the pre-
dictions, thus leading to an estimate of the confidence
in the predictions. The physics-based UQ approach
has two main components: identification of regions in
the flow where the modeling assumptions are plausibly
inaccurate, followed by injection of physically meaningful
and realizable perturbations to the modeled Reynolds stress
tensor in those regions. The present manuscript is focused
solely on the second of these components. Specifically, an
eigen-decomposition of the Reynolds stress is used to allow
for independent perturbations of the magnitude, anisotropy
and direction of the Reynolds stress tensor. Moreover,
the barycentric map is used to define the perturbations
to the anisotropy of the stress. In addition to ensuring a
physically realizable perturbed stress, this approach also
ensures that the perturbations have physical meaning and
interpretations.

Results are presented for incompressible flow in a tur-
bulent channel and duct and for the transonic flow over a
curved bump. The computations illustrate the ability of
the present methodology to provide envelopes around the
baseline model predictions. Of particular importance is the
study of the duct flow in which secondary flows are gener-
ated solely by the turbulence anisotropy and therefore not
predicted by the original eddy-viscosity closure. The pro-
posed perturbation framework is capable of generating sec-
ondary recirculation. The secondary flow is physically re-
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Figure 6. (Color online) Delery bump: profiles of Pw (left column) and τw (rigt column) along the bottom wall, geometry
depicted by the dotted line. The baseline solution is the solid line, and perturbations towards x1c are represented by the dash-
dot line (red online), x2c by the dash-dot-dot (green online), and x3c by the dashed line (blue online). All perturbations use
δmax = 0.5 for the different markers: whole domain (top row) and dc = 0.006m (bottom row).

Table 1. Separation location xs and separation bubble length (lbubble = xr− xs) along the bottom wall for the various Delery
simulations. When the ’whole domain’ marker is used δ = δmax.

Simulation xs [m] lbubble [mm]

SST baseline 0.252 78.01

δmax whole domain dc = 0.006 [m] whole domain dc = 0.006 [m]

x1c

0.1 0.254 0.253 62.80 67.70

0.25 0.256 0.254 52.05 59.09

0.5 0.258 0.256 42.23 49.93

1.0 0.260 0.258 34.36 40.48

x2c

0.1 0.253 0.253 71.20 73.77

0.25 0.253 0.253 64.48 68.59

0.5 0.254 0.254 57.24 63.30

1.0 0.256 0.255 46.66 54.52

x3c

0.1 0.251 0.252 83.68 81.24

0.25 0.249 0.251 95.47 86.39

0.5 0.242 0.249 122.65 97.22

1.0 0.207 0.241 91.53 132.64

alistic when perturbing towards the two-component limit,
which is the correct physical limit when approaching a solid
wall. Interestingly, a completely unphysical “reverse” sec-
ondary flow is generated when perturbing towards the one-

component limit.
The proposed approach for uncertainty injection needs

to be combined with a methodology to determine where (in
space) the model should be trusted or not. Simply put,
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Figure 7. Delery bump: streamlines depicting the separation bubble located along the bottom wall at the end of the bump,
geometry depicted by the dotted line. From top to bottom are the baseline, x1c, x2c, and x3c perturbation solutions at δ = 0.5,
using the whole domain marker.

it would be much too pessimistic to assume that a well-
validated RANS model is wrong everywhere in the domain.
Instead, it is much more realistic to assume that the model is
correct in those regions where the flow is similar to what the
model was designed and validated for (e.g., attached bound-
ary layers), and that the model is erroneous in other, more
complex, flow-regions. The development of such a marker
function that identifies these different regions is part of on-
going work.
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