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ABSTRACT
A new square-fractal-element grid was designed to in-

vestigate the decay of turbulent kinetic energy far down-
stream of a fractal geometry. The grid is composed of sev-
eral square fractal elements mounted to a background mesh.
Measurements of the decay of turbulent kinetic energy at
ReL0 = 57,000 in the region 23 ≤ x/L0 ≤ 45, where L0 is
the size of the largest element in the grid, yield a power-
law decay of the form

〈
q2〉 ∼ (x− x0)

m with m = −1.39.
This result agrees with values of m previously reported for
regular grids, while it contrasts with m ≈ −2.5 previously
reported for space-filling square fractals (Valente & Vassili-
cos, 2011). It is also observed that Richardson-Kolmogorov
scaling, both for the spectra and for Cε , approximately de-
scribes the turbulence produced by this new grid. This is
also in agreement with previous regular grid experiments,
but contrasts with previous fractal grid experiments. Pre-
vious fractal studies have been conducted in the region
x/L0 < 20, and thus the contrasting results are attributed
primarily to the difference in measurement region relative
to L0 of the present and previous studies.

INTRODUCTION
Grid turbulence is an ideal empirical platform for the

evaluation of turbulence theories and models because it pro-
duces flow that approximates homogeneous, isotropic tur-
bulence (HIT) and transforms the temporal decay of tur-
bulence into a spatial one. This decay is typically be-
lieved to follow the form

〈
q2〉 ∼ (x− x0)

m, where
〈
q2〉 =〈

u2〉+
〈
v2〉+

〈
w2〉 is twice the turbulent kinetic energy, x

is downstream distance, and x0 is a virtual origin. Since
the seminal work of Comte-Bellot & Corrsin (1966), ex-
ponent values ranging −1 & m & −1.4 have been reported
(Mohamed & LaRue, 1990; Lavoie et al., 2007; Krogstad
& Davidson, 2010, 2011).

The work of Hurst & Vassilicos (2007) has catalyzed
a modern resurgence in grid turbulence research (Mazellier
& Vassilicos, 2010; Valente & Vassilicos, 2011; Krogstad
& Davidson, 2010, 2011, 2012). Vassilicos and co-workers
have found that the decay behind space-filling square frac-
tals is very rapid, m ≈ −2.5 (Valente & Vassilicos, 2011).
They also observed that the streamwise integral length scale
was approximately proportional to the Taylor microscale,
i.e. Lu/λ ≈ constant, and that the turbulence may be de-
scribed by a single-length-scale, as normalization by large
scale variables collapsed the spectra at all wavenumbers
(which is atypical of regular grid turbulence experiments).
Vassilicos and co-workers have linked this form of rapid

decay to a possible breakdown of the traditional dissipation
scaling, ε ∼

〈
q2〉3/2

/Lu.
To date, fractal studies have employed ‘space-filling’

square fractals where a single fractal element occupies the
entire wind tunnel cross-section. In such a setup, the largest
element of the grid, with length L0, is approximately half
the tunnel height, H, i.e. H/L0 < 2. Corrsin (1963) states
that for reasonable homogeneity, H/M� 1, where M is the
mesh length of the grid. If the largest scale induced by a
square fractal grid is of order L0, making it roughly equiv-
alent to M for a regular grid, then Corrsin’s criterion is not
satisfied for the space-filling square fractals. This may have
a negative impact on the approximation of HIT by the flow
(Wang & George, 2002). Furthermore, given the size of L0,
the relative downstream distance is limited, e.g. x/L0 < 20
in previous studies.

In order to reconcile the rapid decay results of Valente
& Vassilicos (2011) with previous measurements, Krogstad
& Davidson (2011) designed and tested multi-scale ‘cross’
grids that consisted of a regular square mesh with alter-
nating bars of different thickness. Their results demon-
strated that the cross grid multi-scale turbulence did de-
cay with traditional values between −1.12 ≥ m ≥ −1.25.
Later, Krogstad & Davidson (2012) performed measure-
ments in the near-grid region of their cross grids and discov-
ered that the flow was similar to that produced downstream
of a square fractal. However, previous work has not specifi-
cally addressed how square fractal-generated turbulence be-
haves in the far-field. In fact, Valente & Vassilicos (2011)
suggest that if a multi-scale grid was designed such that the
wakes of the various elements could interact in a relatively
short distance, citing specifically cross grids, that it is likely
that the produced turbulence would be similar to that pro-
duced by a regular grid. In the present work, a new design
strategy, where a small fractal element is repeated several
times, is implemented in order to increase H/L0. This strat-
egy both improves the transverse homogeneity and extends
the downstream range relative to L0, addressing the limi-
tations of earlier fractal work while preserving the fractal
geometry.

EXPERIMENTAL PROCEDURE
The new square-fractal-element grid is composed of

several N = 3 square-fractal-elements (where N is the num-
ber of times the fractal shape is repeated) mounted to a
background grid with mesh length M = L0 = 100 mm and
thickness t0 = 6.7 mm (see figure 1). The fractal elements
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Figure 1. Square-fractal-element grid positioned in situ
(left) with a blow-up of a single fractal element (right) and
labels defining dimensions.

have lengths Li = 55.6,24.7, and 11.0 mm with thicknesses
ti = 4.1,2.5, and 1.5 mm. The factors by which the length
and thickness were incremented for each fractal iteration
were RL = 2.25 and Rt = 1.65, respectively. The solidity of
the grid is σ = 0.39. The grid was laser cut out of a single
sheet of 3 mm thick stainless steel.

Measurements were performed in the low-speed
closed-loop wind tunnel at the University of Toronto Insti-
tute for Aerospace Studies. The wind tunnel has a back-
ground turbulence intensity of 0.05% for U ≤ 13 m/s. The
test-section is 5 m long and has a cross-sectional area of
1.2 m × 0.8 m. The corners of the test-section are ad-
justable and were used to create a zero pressure gradi-
ent over its length, such that U = 9 m/s ±1% was main-
tained throughout the test-section, corresponding to ReL0 =
UL0/ν = 57,000. Data were acquired with both single-
wire and X-wire probes simultaneously. The wires were
prepared in-house using 2.5 µm thick copper-coated tung-
sten mounted to Dantec-style prongs. All sensing lengths
were maintained at ` = 0.65± 0.05 mm. Over the range
of Kolmogorov scales η (≡ ν3/4/〈ε〉1/4) measured, the
resolution of the probes was 1.4 . `/η . 2.3. The hot-
wires were calibrated in situ at the farthest downstream lo-
cation, where the turbulence intensity was less than 1%.
The single-wire was calibrated with ten velocities fit with a
fourth-order polynomial. The X-wires were calibrated with
ten velocities and seven angles, using the look-up table ap-
proach described by Burattini & Antonia (2005). Pre- and
post-calibrations were performed for every set of stream-
wise measurements to account for hot-wire drift. Prior to
acquisition, data were low-pass filtered at 9.2 kHz with the
sampling frequency set to twice that of the filter. Samples
were recorded for 8 minutes or longer in order to ensure
better than±1% convergence of

〈
q2〉, which was estimated

from
〈
q2〉 =

〈
u2〉+2

〈
v2〉 after verifying

〈
v2〉 ≈

〈
w2〉. In

the streamwise direction, measurements were performed in

32.0 mm (≈ L0/3) increments in the range 2.3 m ≤ x ≤
4.5 m using a stepper-motor-actuated traverse. This range
is farther downstream than the work of Vassilicos and co-
workers and does not overlap with their measurement re-
gion due to mechanical limitations of the traverse. Vertical
profiles were also measured at x = 2.4 m and 3.27 m over
the range −17.5 cm ≤ z≤ 10 cm in increments of 24.0 mm
(≈ L0/4).

Post-acquisition, data were recursively band-pass fil-
tered between 1.25 Hz and the Kolmogorov frequency,
fK = U/2πη , using the technique introduced by Mi et al.
(2011). A fifth-order digital Butterworth filter was used.
Gradients were estimated using a sixth-order centred-
difference scheme, and spatial corrections were made for
both the fluctuating velocities and gradients (Wyngaard,
1968; Zhu & Antonia, 1995; Hearst et al., 2012).

RESULTS
Homogeneity and isotropy

Table 1 presents estimates of several turbulence prop-
erties at five discrete downstream locations. The values of
u′/v′, which represent the global isotropy, presented in ta-
ble 1, are in good agreement with previous passive grid
turbulence measurements (Comte-Bellot & Corrsin, 1966;
Hurst & Vassilicos, 2007; Lavoie et al., 2007; Krogstad
& Davidson, 2010, 2011). Furthermore, the degree of lo-
cal isotropy exhibited by the flow is also very good with
〈(∂v/∂x)2〉/〈(∂u/∂x)2〉 ≥ 1.75, where 2 is the ideal case.
For perspective, Valente & Vassilicos (2011) measured lo-
cal isotropy values below 1.5.

Corrsin (1963) states that ‘some necessary conditions
for effective homogeneity are’:

dLu

dx
� 1,

Lu

λ
dλ
dx
� 1, − Lu〈

u2
〉 d
〈
u2〉

dx
� 1, (1)

where Lu is the integral length scale based on u. Here, Lu is
estimated by integrating the area under the autocorrelation,
〈u(x)u(x+ r)〉, to the first zero-crossing. These quantities
are plotted with offsets in figure 2(a) and are all shown to
be relatively constant and very close to zero. Further as-
sessment of the homogeneity may be made by estimating
the skewness, Su, and flatness, Fu, of the probability den-
sity functions of u. Figure 2(b) demonstrates that Su(x) ap-
proaches zero downstream, as is typical in grid turbulence.
Furthermore, Fu(x) is independent of x and has a mean value
of ≈ 2.95, again in good agreement with previous measure-
ments and expectations (Krogstad & Davidson, 2011). Fig-
ure 2(c), which shows the transverse measurements of Su(z)
and Fu(z), verifies that they are approximately constant in
the two planes measured. Finally, the ratio of Lu/Lv is ap-
proximately constant with x/L0 (see table 1), indicating the
relative size of the largest eddies in the two directions re-
mains constant throughout the decay.

Power-law decay
The power-law decay of turbulent kinetic energy may

be expressed as

〈
q2
〉
= A

(
x

L0
− x0

L0

)m
, (2)

2



August 28 - 30, 2013 Poitiers, France

HOM2D

x/L0 25.0 30.0 35.0 40.0 44.5
〈
u2
〉1/2 λ/ν = Reλ 99 92 89 85 82

u′/U 3.11 2.65 2.35 2.12 2.00 [%]
Lu 31.9 33.9 36.3 36.9 37.9 [mm][

5ν
〈
q2
〉
/〈ε〉d

]1/2
= λ 5.4 6.0 6.6 7.1 7.6 [mm]

η 0.29 0.33 0.37 0.41 0.44 [mm]
−(U/2)(d

〈
q2
〉
/dx) = 〈ε〉d 0.59 0.34 0.22 0.15 0.11 [m2 s−3]

3ν
[〈
(∂u/∂x)2

〉
+2
〈
(∂v/∂x)2

〉]
= 〈ε〉XW 0.63 0.37 0.24 0.16 0.13 [m2 s−3]

15ν
〈
(∂u/∂x)2

〉
= 〈ε〉iso 0.66 0.39 0.26 0.18 0.14 [m2 s−3]

u′/v′ 1.13 1.13 1.16 1.16 1.17〈
(∂v/∂x)2

〉
/
〈
(∂u/∂x)2

〉
1.89 1.87 1.78 1.75 1.77

Lu/Lv 2.4 2.4 2.4 2.3 2.3
Table 1. Turbulent flow properties at five downstream locations.
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Figure 2. Assessment of flow homogeneity. (a) Corrsin (1963) streamwise homogeneity criteria. (b) Streamwise direction
skewness and flatness. (c) Transverse plane skewness and flatness. Only every second point is plotted in order to reduce clutter
in (a) and (b).

where A is a constant of proportionality, x0 is a virtual ori-
gin, and L0 is used to non-dimensionalize x. The typical
choice for non-dimensionalizing x is M, however this is not
applicable here. It is common to use a least-squares method
to fit empirical measurements of

〈
q2〉 to (2). Mohamed

& LaRue (1990) remarked that the accuracy of the least-
squares fitting is greatly improved if the number of variable
parameters is reduced. Rather than treating x0 as a free pa-
rameter, Lavoie et al. (2007) developed a technique where
a range of x0 values were inserted into the power-law, and
A and m were determined with less variance for each x0.
There is also significant ambiguity associated with identify-
ing xmin, which marks the beginning of the power-law decay
range (PLDR). Determining xmin has been addressed in sev-
eral ways in previous studies, but typically it is accepted that
measurements recorded in the range x/M & 30 are within
the PLDR (Corrsin, 1963; Comte-Bellot & Corrsin, 1966;
Lavoie et al., 2007; Krogstad & Davidson, 2011).

The technique used here is a combination of that pro-
posed by Lavoie et al. (2007) and the regression technique
of Krogstad & Davidson (2011). The present technique is
aimed at reducing ambiguities associated with user choice

in the power-law fitting process. The technique is as fol-
lows:

1. A linear fit is made to the natural logarithm of (2) for
virtual origins over a range−8.0≤ x0/L0 ≤ 13.0 in in-
crements of 0.5 using a least-squares regression algo-
rithm. For each x0/L0, the power-law is also estimated
for various xmin/L0 values starting from the first mea-
surement location. Fits are not made to ranges smaller
than 10L0 due to a rapid decrease in fitting accuracy.
Through this process, a matrix of m values is created
where one dimension represents the dependence of m
on x0/L0 and the other on xmin/L0.

2. The virtual origin is selected by choosing the x0/L0
which yields the lowest standard deviation of m relative
to its mean for all choices of xmin/L0. This has the
effect of choosing the x0/L0 which is least influenced
by the PLDR, indicating that the power-law is constant
over the largest downstream range.

3. Given x0/L0 from step (2), the normalized root-mean-
square deviation (χ) is then calculated between the
data and the power-law fit for each possible choice of
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xmin/L0. xmin/L0 is then chosen such that χ is mini-
mized. Through this process, the PLDR represents the
power-law range that fits the data most accurately.

4. The percentage difference (∆i) is then calculated at
each measurement location between

〈
q2〉 and the

power-law fit obtained from step (3). Steps (1), (2), and
(3) are then repeated iteratively, excluding from the fit-
ting process any locations i where ∆i is outside of two
standard deviations from its mean. The end criterion is
that no outliers are detected.

The above technique was applied to the streamwise
measurements of

〈
q2〉 for the square-fractal-element grid.

The process converged in two iterations and only dis-
carded 4 out of 70 measurements. The estimated power-
law that describes the empirically measured

〈
q2〉 is

〈
q2〉=

12.81(x/L0−6.0)−1.39 and applies over the range 24.1 ≤
x0/L0 ≤ 45 with χ = 1.11%. Figure 3(a) plots the decay
of
〈
q2〉 and its fit. Figure 3(b) shows the variation of m

with xmin/L0 for different values of x0/L0. The error bars
indicate the value of χ for each fit. The uncertainties on
the power-law parameters are x0/L0± 2, xmin/L0± 1, and
m± 0.1. These relatively high uncertainties compared to
previous regular grid experiments are attributable to the rel-
atively short decay range investigated here. However, the
range over which the power-law is fitted here is significantly
longer than any other previous fractal grid experiments.

To gain confidence in the estimate of m, it is common
to estimate the power-law based on

〈
u2〉 and

〈
v2〉 sepa-

rately, but using the values of x0/L0 and xmin/L0 found for〈
q2〉. This also ensures that the results are self-consistent.

Values of mu =−1.32 and mv = −1.44 were found for the
decay of

〈
u2〉 and

〈
v2〉, respectively. These are both within

±5% and the uncertainty of m estimated from
〈
q2〉. The

classical behaviour experienced within the present measure-
ment region is further validated by the approximately linear
evolution of λ 2, figure 3(a), which is a consequence of the
power-law decay (George, 1992; Danaila et al., 2002).

Significantly, the values of m found here are closer
to the regular grid results reported in the literature than to
m ≈ −2.5 found in earlier fractal work. Furthermore, the
value of xmin/L0 = 24.1 is in good agreement with typi-
cal values of 20 . xmin/M . 35 for regular grids if L0 is
assumed to be equivalent to M (Comte-Bellot & Corrsin,
1966; Lavoie et al., 2007; Krogstad & Davidson, 2011). It
is also worth noting that this value of xmin/L0 is beyond the
farthest downstream point of previous fractal grid measure-
ments.

Self-similarity of the spectra
Typically for HIT, when normalized by large scale

variables, Lu and
〈
u2〉, the spectra (

〈
u2〉 = ∫ ∞

0 F11(k)dk)
should collapse only at the low wavenumbers. The oppo-
site is true when normalized by Kolmogorov variables, η
and ν , e.g. Antonia & Orlandi (2004). This is a conse-
quence of Richardson-Kolmogorov phenomenology, which
predicts that there are two sets of variables, inner and outer,
that collapse the high- and low-frequency parts of the spec-
tra, respectively. Figure 4 demonstrates that these trends
are true of the data collected here. In each plot, spectra are
shown for three downstream locations and their collapse is
as one would expect for a regular grid. This agrees with the
findings of Krogstad & Davidson (2011) and contrasts with
the findings of Mazellier & Vassilicos (2010) and Valente
& Vassilicos (2011) who found that normalization by large
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Figure 3. (a) The decay of turbulent kinetic energy and
evolution of the Taylor microscale with power-law fits. (b)
Variations of m with xmin/L0; (�) x0/L0 = 10, (O) x0/L0 =

6, (4) x0/L0 = 3, (�) x0/L0 = 0, (/) x0/L0 =−4. An arrow
indicates the algorithm’s chosen solution.

scale variables collapsed the spectra for all k.
Although this result is expected, it is significant be-

cause it contrasts with previous measurements behind frac-
tals that showed evidence of a self-preserving single-length-
scale form of turbulence (Mazellier & Vassilicos, 2010; Va-
lente & Vassilicos, 2011). In these measurements, it was
shown that normalization by Lu and

〈
u2〉 resulted in ap-

proximate collapse of the spectra at all wavenumbers. Va-
lente & Vassilicos (2011) also measured Lu ∝ λ , which led
them to speculate that there was a breakdown of the tradi-
tional Reλ ∝ Lu/λ scaling. Figure 5(a) shows that Lu is
not proportional to λ in the present measurements. Further-
more, figure 5(b) demonstrates that the Reλ ∝ Lu/λ scaling
is preserved. This key difference between the present mea-
surements and previous measurements is likely the cause
for the difference in the spectral scaling.

Normalized energy dissipation rate
Following from Richardson-Kolmogorov phenomenol-

ogy, the dissipation is expected to scale with ε ∼〈
q2〉3/2

/Lu. This is often measured in experiments using

4



August 28 - 30, 2013 Poitiers, France

HOM2D

10
−1

10
0

10
1

10
2

10
−5

10
0

F
1
1
/
〈u

2
〉L

u

kLu

 

 

x/L0 = 25.0
x/L0 = 35.0
x/L0 = 44.5

(a)

10
−3

10
−2

10
−1

10
0

10
0

10
5

10
10

F
1
1
/
η
ν
2

kη

 

 

x/L0 = 25.0
x/L0 = 35.0
x/L0 = 44.5

(b)

Figure 4. Spectra at three downstream locations normal-
ized by (a) large scale variables, and (c) Kolmogorov vari-
ables.

the isotropic form of the normalized energy dissipation rate,

Cε =
〈ε〉Lu〈
u2
〉3/2

. (3)

Anisotropy can be considered in the estimation of Cε by us-
ing a definition of 〈ε〉 that considers both u and v and by

substituting
〈
u2〉3/2

= (
〈
q2〉/3)3/2. The dissipation esti-

mated from the decay of turbulent kinetic energy, 〈ε〉d , is
calculated using the power-law fit to

〈
q2〉. The dissipation

is also estimated using the isotropic definition, 〈ε〉iso, and
homogeneous assumptions with a X-wire, 〈ε〉XW . The three
different estimates of 〈ε〉 used here are defined in table 1.

In grid turbulence, Cε ≈ constant with x/L0 if Reλ
is adequately high (Sreenivasan, 1984; Burattini et al.,
2005). However, Valente & Vassilicos (2011) measured
non-constant Cε for their fractals and linked this to the con-
stancy of Lu/λ and a possible breakdown of the classical

ε ∼
〈
q2〉3/2

/Lu scaling. Figure 6 shows Cε estimated with
both isotropic and anisotropic forms for the present mea-
surements. The Cε results of Valente & Vassilicos (2011)
were digitized and also shown in figure 6 for comparison.
For the present measurements, Cε is approximately constant
for x/L0 > 25. This is not surprising given figure 5 that

shows Reλ ∝ Lu/λ , which supports ε ∼
〈
q2〉3/2

/Lu scal-
ing. These results are once again in good agreement with
previous regular grid experiments.
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Figure 5. Evolution of Lu/λ with (a) x/L0, and (b) Reλ
with linear fit representing Reλ ∝ Lu/λ .

CONCLUSIONS
Using a novel square-fractal-element grid, measure-

ments were conducted farther downstream of the fractal ge-
ometry than previously attainable. In this extended down-
stream region, it was found that a classical power-law decay
region exists with m = −1.39 based on

〈
q2〉. The power-

law decay region was also found to begin at 24L0. These re-
sults, both for m and the start of the power-law decay region,
are in good agreement with regular grid turbulence results
from the literature if L0 is taken to be equivalent to M. It
was also found that Richardson-Kolmogorov phenomenol-
ogy, i.e. inner and outer variable spectral scaling, Cε ≈ con-
stant, and Reλ ∝ Lu/λ , was preserved in the present inves-
tigation.

While these results contrast with those of Vassilicos
and co-workers for space-filling square fractals, it must be
emphasized that the investigation regions of the two studies
did not overlap, i.e. this study was conducted farther down-
stream relative to L0. Furthermore, the Reλ investigated
here are in the range 80 < Reλ < 100, while previous frac-
tal work has reached Reλ ≈ 350. Nonetheless, the major
conclusion from this work is that the present results are in
good agreement with those previously obtained using reg-
ular grids and multi-scale cross grids. This suggests that
the fractal nature of the grid may not necessarily play as
important a role in the decay of turbulence as previously
suspected, provided the turbulence has had an opportunity
to fully develop some distance downstream of the grid.
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Figure 6. Normalized energy dissipation rate, Cε , for present data estimated with three different methods (open symbols);
only every second point is plotted to reduce clutter. Digitized Cε data from Valente & Vassilicos (2011) (closed symbols) for a
Fractal Square Grid (FSG), L0 = 237.8 mm, and a Regular Grid (RG), L0 = 60.0 mm.
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