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ABSTRACT
The stirring and mixing of a passive scalar by grid-

generated turbulence in the presence of a mean scalar gra-
dient is studied in three dimensions by DNS (Direct Nu-
merical Simulation). Using top-end high fidelity computer
simulations, we calculate and compare the effects of vari-
ous fractal and regular grids on scalar transfer and turbu-
lent diffusion efficiencies. We demonstrate the existence of
a new mechanism present in turbulent flows generated by
multiscale/fractal objects which has its origin in the mul-
tiscale/fractal space-scale structure of such turbulent flow
generators. As a result of this space-scale unfolding (SSU)
mechanism, fractal grids can enhance scalar transfer and
turbulent diffusion by one order of magnitude while at the
same time reduce pressure drop by half. The presence of
this SSU mechanism when turbulence is generated by frac-
tal grids means that the spatial distribution of length-scales
unfolds onto the streamwise extent of the flow and gives rise
to a variety of wake-meeting distances downstream. This
SSU mechanism must be playing a decisive role in envi-
ronmental, atmospheric, ocean and river transport processes
wherever turbulence originates from multiscale/fractal ob-
jects such as trees, forests, mountains, rocky river beds and
coral reefs. It also ushers in the new concept of fractal de-
sign of turbulence which may hold the power of setting en-
tirely new mixing and cooling industrial standards.

INTRODUCTION
Recently, Hurst & Vassilicos (2007); Mazellier &

Vassilicos (2010); Nagataet al. (2008); Nicolleauet al.
(2011); Valente & Vassilicos (2011); Gomes-Fernandes
et al. (2012) used different multiscale grids to generate
turbulence in a wind tunnel or in a water tank and have
shown that complex multiscale boundary/initial conditions
can drastically influence the behaviour of a turbulent flow,
especially when a fractal square grid (see figure 1) is placed
at the entry of a wind tunnel test section. Fractal geometry
is a concept where a given pattern is repeated and split into
parts, each being a reduced-copy of the whole. Multiscale

(fractal) objects can be designed to be immersed in any fluid
flow where there is a need to control and design the turbu-
lence generated by the object. The experiments have shown
that, unlike regular objects (where the turbulence is gener-
ated by only one scale), a slight modification of one of the
multiscale object’s parameters can deeply modify the tur-
bulence generated by the fluid’s impact on the object. Mul-
tiscale objects offer the opportunity to discover new com-
plex flow effects/interactions that can help understand how
to control and/or manage complex fluid flows. Furthermore,
such multiscale objects can be designed as energy-efficient
mixers with high turbulent intensities and a small pressure
drop, see Laizet & Vassilicos (2012). Coffeyet al. (2007)
have also shown experimentally that fractal grids can be
designed as stirring elements for inline static mixers and,
as such, that they compare favourably with commercially
available state-of-the-art stirring elements.

In this computational study we calculate and compare
the effects of various fractal and regular grids on scalar
transfer and turbulent diffusion efficiencies (Shraiman &
Siggia (2000); Warhaft (2000); Suzukiet al. (2010)). As
a result we report on a new mechanism which greatly
increases scalar transfer and turbulent diffusion and at
the same time reduces pressure drop and therefore power
losses.

The organisation of this paper is as follows. In the fol-
lowing section, we present the DNS methodology, a brief
description of the grids and the numerical parameters of
each simulation. Some results about the turbulence and the
flow field downstream of the grid are discussed in the fol-
lowing section. Then, passive scalar results are presented,
followed by a conclusion.

FLOW PARAMETERS AND NUMERICAL
MODELLING
Numerical Methods

To solve the incompressible Navier-Stokes equations
and the transport equation for the passive scalar, we use a
numerical code (calledIncompact3d) based on sixth-order
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nx×ny×nz Lx×Ly×Lz (tmin) Grid It. κ S tmin σ Me f f

DNS1 2305×288×288 768×96×96 � 3 10ν 1/16 0.3 14.7tmin

DNS2 2305×288×288 768×96×96 I 3 10ν 1/16 0.3 23.4tmin

DNS3 2881×360×360 1152×144×144 � 4 10ν 1/16 0.5 6.5tmin

DNS4 2881×180×180 1152×72×72 Reg. 10ν 1/16 0.5 6.5tmin

Table 1. Numerical parameters of the simulations and characteristics of the grids.

compact schemes for spatial discretization and a third order
Adams-Bashforth scheme for time advancement. To treat
the incompressibility condition, a fractional step method re-
quires to solve a Poisson equation. This equation is fully
solved in spectral space, via the use of relevant 3D Fast
Fourier Transforms. The pressure mesh is staggered from
the velocity mesh by half a mesh, to avoid spurious pressure
oscillations. With the help of the concept of modified wave
number, the divergence free condition is ensured up to ma-
chine accuracy. More details about the present code and its
validations, especially the original treatment of the pressure
in the spectral space, can be found in Laizet & Lamballais
(2009). The modelling of the grids is performed by an Im-
mersed Boundary Method, following a procedure proposed
by Parnaudeauet al. (2008). The present method is a direct
forcing approach that ensures the no-slip boundary condi-
tion at the grid walls. It mimics the effects of a solid surface
on the fluid with an extra forcing in the Navier-Stokes equa-
tions.

Because of the size of the simulations, the parallel
version ofIncompact3d has been used for this numerical
work. Based on a highly scalable 2D decomposition library
and a distributed FFT interface, it is possible to use the code
on thousands of computational cores. More details about
this efficient parallel strategy can be found in Laizet & Li
(2011).

Governing equations
The governing equations for the incompressible veloc-

ity field are the forced Navier-Stokes equations:

∂u
∂ t

=−∇p− 1
2
[∇(u⊗u)+(u.∇)u]+ν∇2u+ f (1)

∇.u = 0 (2)

where p(x, t) is the pressure field (for a fluid with a con-
stant densityρ = 1) andu the velocity field. The forcing
field f(x, t) is used through an Immersed Boundary Method
in order to take into account the grid inside the computa-
tional domain.x ≡ (x,y,z) are the spatial coordinates in the
streamwise (x) and two spanwise directions.

The scalar fieldθ(x, t) is advected by the velocity field
and diffused by molecular processes, i.e. our code solves

∂θ
∂ t

+u ·∇θ = κ∇2θ (3)

with molecular diffusivityκ = 10ν . The initial condition
we impose on this scalar field isθ(x,0) = SywhereS is a

Figure 1. Scaled diagrams of the four grids used in this
study. From left to right: fractal square grid with 3 fractal
iterations, I grid with 3 fractal iterations, square grid with 4
fractal iterations and regular grid.

constant scalar gradient and the inflow condition isθ = Sy
at all time. The other boundary conditions forθ are outflow
in the streamwise end of the computational domain, peri-
odic in the z direction and an anti-symmetric conditions in
the y direction. These conditions are the simplest way to ini-
tiate and sustain a turbulent scalar flux, see Corrsin (1952);
Wiskind (1962); Warhaft (2000)

Numerical Parameters
As shown in Figure 1, four different grids are used in

this numerical work to investigate the streamwise evolution
of the stirring and mixing of a passive scalar in the pres-
ence of a mean scalar gradient. We considered two families
of fractal grids each based on a different fractal-generating
pattern, see Hurst & Vassilicos (2007). The two patterns
can be distinguished by the number of rectangular bars they
require, 3 for the I grid and 4 for the square grids. These
fractal grids are completely characterised by the choice of
the pattern and:

(i) the number of fractal iterationsN, hereN= 3 for the
fractal I grid andN = 3,4 for the fractal square grids,
(ii) the bars’ lengthsL j = Rj

LL0 and lateral thicknesses

t j = Rj
t t0 (in the plane of the grid, normal to the mean

flow) at iteration j, j = 0, ...,N − 1. Here, RL =
1/2, L0 = 0.5Ly for all the fractal grids, whereLy and
Lz (with Ly = Lz) are the lateral sizes of the computa-
tional domain. By definition,L0 = Lmax, LN−1 = Lmin,
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Figure 2. Instantaneous absolute value of the vorticity vector normalised by its maximum over the(y−z) planes. Plots in the
(x− y) plane forz= Lz/2. Top: DNS1 with the fractal square grid with three fractal iterations and bottom: DNS2 with the I
grid.
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Figure 3. Instantaneous absolute value of the vorticity vector normalised by its maximum over the(y−z) planes. Plots in the
(x−y) plane forz= Lz/2. Top: DNS3 with the fractal square grid with four fractal iterations and bottom: DNS4 with a regular
grid.

t0 = tmax and tN−1 = tmin. Note that, in the present
work, tmin is set to the same value for all fractal grids,
(iii) the number 4j of patterns at iterationj
(iv) the thickness ratiotr ≡ tmax/tmin, i.e. the ratio
between the lateral thickness of the bars making the
largest pattern and the lateral thickness of the smallest.
tr = 8.67 for the fractal square grid with three itera-
tions,tr = 10.5 for the fractal I grid andtr = 8.5 for the
fractal square grid with four fractal iterations.

The blockage ratioσ of our fractal grids defined as the
ratio of their total area in the lateral plane to the area
T2 = Ly×Lz, are determined by our choices of the previous
parameters and are given in Table 1.

Unlike regular grids, multiscale/fractal grids do not
have a well-defined mesh size. This is why Hurst & Vas-
silicos (2007) introduced an effective mesh size for multi-
scale grids,Me f f =

4T2

LG

√
1−σ whereLG is the perimeter

length in the(y− z) plane of the fractal grid. The multi-
scale nature of multiscale/fractal grids influencesMe f f via
the perimeterLG which can be extremely long in spite of be-
ing constrained to fit within the areaT2 = Ly×Lz. However,
this definition ofMe f f also returns the regular mesh size M,
when applied to our regular grid. The effective mesh size

is fully determined by our choices of parameters character-
ising the fractal grids and is given in Table 1. The regular
grid considered here has the same blockage ratio as the frac-
tal square grid with four iterations. The lateral thicknessb
of this regular grid is 2.6tmin. Note finally that the stream-
wise thickness of the bars is 3.2tmin for all four grids used
in this numerical study.

The computational domain and number of mesh nodes
for each simulation are given in Table 1. For the veloc-
ity field, inflow/outflow boundary conditions are used in the
x-direction and periodic boundary conditions in they di-
rection for−Ly/2 andLy/2 and in thez direction−Lz/2
andLz/2. For each grid, the simulation is performed with
a Reynolds numberRetmin = 300 (based on the smallest lat-
eral thicknesstmin of the fractal grids and the streamwise
upstream velocityU∞).

FLOW FIELD AND TURBULENCE
3D enstrophy visualisations of the turbulent flows gen-

erated by the regular grid and the three fractal square grids
are shown in figures 2 and 3. In these figures we plot iso-
surfaces of the absolute value of the vorticity vector nor-
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Figure 4. 3D isosurfaces for the absolute value of the vor-
ticity vector normalised by its maximum over the(y− z)
plane in a 3D cubeLy × Ly × Lz at the end of the compu-
tational domain. Top left: DNS1, top right: DNS2, bottom
left: DNS3 and bottom right: DNS4. The isosurface is 0.5
in all four plots.

malised by its maximum over the y-z planes. These plots
are in the(x−y) plane forz= Lz/2. These isosurfaces are
normalised in such a way that the decay of the turbulence is
not visible on these plots. For the two grids with three frac-
tal iteration (DNS1 and DNS2) and with the same blockage
ratio, it can be seen that a non-homogeneous turbulent field
is obtained close to the grids. In the case of the square grids
(DNS2/DNS3), the turbulence does homogenise relatively
close to the grid whereas for the I grid (DNS1) the influ-
ence of the grid and in particular of the biggest I can be
seen until the end of the computational domain. For the
regular grid, a conventional homogeneous istropic turbu-
lence is obtained, with a streamwise increase of the size of
the turbulent structures. Finally, it seems that the number
of fractal iterations is playing a key role in the generation of
the turbulence, as the two big wakes for DNS1 (three fractal
iterations) and DNS3 (four fractal iterations) look quite dif-
ferent, with more pronounced streets of vortices for DNS1
in the first part of the computational domain.

The fact is also that these two different types of tur-
bulent flows are generated in different ways. In the regular
grid case, same-size wakes interact within a couple of mesh
sizes from the grid and mix together in a uniform fashion
close to the grid. In the fractal grid case, Laizet & Vassilicos
(2009); Mazellier & Vassilicos (2010); Laizet & Vassilicos
(2012) suggested that the smallest bars on the grid gener-
ate the smallest wakes which meet and mix together at the
smallest distance from the grid, whereas larger bars gener-
ate larger wakes which meet and mix at a further distance
from the grid, and that this process repeats itself from the
smallest to the largest turbulence-generating scales on the
grid in a way which causes the turbulence to progressively
intensify over a protracted distance from the grid. We can
therefore expect to have different behaviours for our passive
scalar fields depending on the turbulent generator.

Figure 4 shows 3D isosurfaces of the absolute value
of the vorticity vector normalised by its maximum over the
(y− z) plane in a 3D cubeLy × Ly × Lz at the end of the
computational domain. The one obvious difference in these
visualisations between the turbulent flow generated by the
regular grid and the turbulent flows generated by the frac-
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Figure 5. Streamwise evolution of< u′2 >0.5 /U∞ (top)
and< p> /0.5ρU2

∞ (bottom) where< . > denotes an aver-
age iny andz and over the collection timeT.

tal grids is that the latter are clearly more intermittent, es-
pecially for the fractal I grid (DNS2) where most of the
structures in this particular visualisation are located near the
top of the domain. The finest structures are obtained for
the fractal square grid with four fractal iterations (DNS3)
and the largest structures are obtained for the regular grid
(DNS4).

Figure 5 shows the streamwise evolution of< u′2 >0.5

/U∞ and< p > /0.5ρU2
∞ (wherep is the pressure divided

by the fluid’s mass density) for the four different grids with
respect tox/Me f f . The regular grid generates a much higher
peak average turbulence (more than 55%) than the three
fractal grids. However, the average turbulence decay is
much slower for the fractal grids whereas a very fast de-
crease can be observed for the regular grid. It should be
noted that the spatial location of the peak of turbulence is
approximately at a distance of 1Me f f from the grid for all
four grids. At a distance of 35Me f f from the grid, the aver-
age turbulence for the fractal square grid with four fractal it-
erations is about 15% whereas for the regular grid it is only
about 2.5% (same blockage ratio for the two grids). An-
other important result is the confirmation of the wind tun-
nel experiments of Hurst & Vassilicos (2007) that the I grid
generates more turbulence on the centreline than the square
grid, with a slower decay rate for the average turbulence.

The streamwise evolution of the pressure is consistent
with the streamwise evolution of the average turbulence.
For the regular grid the pressure drop is very important very
close to the peak and then it remains constant at a low value
whereas the three fractal square grids return a smaller pres-
sure drop with a much longer pressure recovery length. As
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streamwise location of 600tmin for z= Lz/2 where< . >t

denotes an average in time only.

expected, DNS3 and DNS4 return a higher pressure drop
than DNS1 and DNS2 (corresponding to the fractal grids
with three fractal iterations) as their blockage ratio of 0.5 is
higher than the one of 0.3 for DNS1 and DNS2. However,
the pressure drop between upstream and far downstream in
DNS3 is about half that for DNS4 even though the block-
age ratio is the same. DNS1 and DNS2 have a similar low
pressure drop even if the patterns of the grids are different.

PASSIVE SCALAR
The first important result concerning our passive scalar

investigation is presented Figure 6. We find for our four
grids that< θ >t≈ Sy. This first result is a non-trivial re-
sult reminiscent of one by Corrsin (1952) for homogeneous
isotropic turbulence, see also Mydlarski & Warhaft (1998).

One interesting result about the passive scalar is pre-
sented in Figure 7 (top) where we can observe a contin-
uous increase for the passive scalar variance, much more
pronounced for the fractal grids. For instance, at the end
of the computational domain, the variance is more than ten
times bigger for the fractal grid with four fractal iterations
(DNS3) than for the regular grid (DNS4). The monotonic
increase of the passive scalar variance for the four grids is
in qualitative agreement with the experiments of Sirivat &
Warhaft (1983) where the variance was found to grow lin-
early with streamwise distance in decaying turbulent grid
flow. Finally, it should be noted that the rate of increase is
different for different grids.

The streamwise evolution of the normalised transverse
turbulent scalar transfer< v′θ ′ > /κS for the four different
grids is plotted in Figure 7 (bottom). Different behaviours
can again be observed: for the regular grid (DNS4), the
normalised transverse turbulent scalar transfer peaks very
close to the grid and then decay very quickly. For the fractal
square grid with four fractal iterations (DNS3) and for the
fractal I grid (DNS2), the normalised transverse turbulent
scalar transfer peaks at a further distance from the grid, just
before 200tmin and then remains approximately constant un-
til the end of the computational domain. Finally, for the
fractal square grid with three fractal iterations (DNS1), the
normalised transverse turbulent scalar transfer also peaks
just before 200tmin but then decay linearly from a value of
about 15 to a value of about 7 at the end of the computa-
tional domain. The ratio of< θ ′v′ > for the fractal grid
with four fractal iteration (DNS3) to< θ ′v′ > for the regu-
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Figure 7. Streamwise evolution of the variance1
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(top) and of< v′θ ′ > κS(bottom).

lar grid (DNS4) is oscillating between 19 atx= 200tmin and
32 at the end of our computational domain.

CONCLUSION
Four spatially evolving turbulent flows generated by

three fractal grids and a regular grid have been investigated
by means of Direct Numerical Simulation. We have focused
on the stirring and mixing of a passive scalar in the presence
of a mean scalar gradient. Different behaviours for different
grids have been observed for the passive scalar variance and
passive scalar flux.

The presence of the space-scale unfolding (SSU)
mechanism introduced by Laizet & Vassilicos (2012) when
turbulence is generated by fractal grids means that, for the
same blockage ratio, the spatial distribution of length-scales
on the fractal grid unfolds onto the streamwise extent of the
flow and gives rise to a variety of wake-meeting distances
downstream. As a result, the grid’s turbulence generation
is distributed in the streamwise direction causing the turbu-
lence to be less and the pressure drop smaller very near the
grid by comparison to a same blockage regular grid, but a
much longer pressure recovery and a much slower turbu-
lence decay in multiples ofMe f f.

This mechanism is absent from regular grid turbulence
where all wakes meet their neighboring wakes at the same
short distance from the grid causing a great burst of intense
turbulence very near the grid and a fast decay of this turbu-
lence. The SSU mechanism is also responsible for the great
scalar transfer enhancement caused by the fractal grids.

Further simulations will be required to investigate in
more detail the SSU mechanism. In particular, it could be

5



August 28 - 30, 2013 Poitiers, France

HOM2C

interesting to change the boundary conditions for the pas-
sive scalar (wall in they direction for instance) so that we
can study the passive scalar variance decrease in the stream-
wise direction. Another future direction of investigation
concerns the influence of the Prandtl number.
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