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ABSTRACT
In this paper we present results concerning the spatial

development of energy spectraE11( f ) and their associated
integral and Taylor scales in conjunction with the spatial de-
velopments of vorticity, strain and production rates of vor-
ticity and strain obtained from Direct Numerical Simula-
tions of spatially developing grid-generated turbulence. We
use a fractal square grid and a single mesh grid where the
mesh is similar to the largest square on the fractal square
grid.

We find two adjacent but physically different regions
in these flows relatively close to the grid: one where the
Q-R diagram has not yet formed its well-known, presumed
universal, tear-drop shape (Tsinober (2009)) butE11( f ) ∼
f−5/3 over more than a decade of a frequency range which
is set by inlet conditions rather than Kolmogorov scalings:
and one where theQ-R diagram immediately adopts the
well-known tear-drop shape andE11( f ) ∼ f−5/3 over a
Kolmogorov range of frequencies which increases as the
local Reynolds number increases. In the one case with the
higher local Reynolds numbers, the first region gives rise, as
one moves downstream, to the non-equilibrium behaviour
Cε ∼ 1/Reλ whilst the second region leads toCε =Const.

INTRODUCTION
Recent wind tunnel and water channel experiments by

Seoud & Vassilicos (2007); Mazellier & Vassilicos (2010);
Valente & Vassilicos (2011, 2012); Gomes-Fernandeset al.
(2012); Discettiet al. (2013); Nagataet al. (2013) have
revealed that a substantial region of well-developed de-
caying turbulence exists in the lee of space-filling frac-
tal square and regular grids where the ratio of the integral
length-scaleL to the Taylor microscaleλ remains approx-
imately constant as the turbulence and the Reynolds num-
ber Reλ ≡ u′λ

ν decay (u′2 is a measure of the turbulent ki-
netic energy andν is the kinematic viscosity). The direct

implication is that the normalised dissipation constantCε
scales asCε ∼ 1/Reλ in that region, in stark contrast with
the assumptionCε =Constrefered to by Tennekes & Lum-
ley (1972) as “one of the cornerstone assumptions of turbu-
lence theory”. This is a region of well-developed turbulence
in the sense that the statistics of turbulent fluctuating veloci-
ties are approximately gaussian and Eulerian energy spectra
have well-defined power-law shapes with exponents close
to −5/3 over at least one decade of wavenumbers (see ref-
erences mentioned above). This is also a region where the
turbulence can be considered to be out of two-point equilib-
rium because the normalised rate of interscale energy trans-
fer can be expected to be constant over a significant range
of scales and therefore out of balance with the normalised
dissipation rateCε ∼ 1/Reλ during streamwise decay.

In this paper we investigate grid-generated turbulence
numerically and include in our investigation the production
region upstream of the decay region where the new non-
equilibrium dissipation law has been observed (Seoud &
Vassilicos (2007); Mazellier & Vassilicos (2010); Valente
& Vassilicos (2011, 2012); Gomes-Fernandeset al. (2012);
Discetti et al. (2013); Nagataet al. (2013)). An important
question which arises from these experimental studies has
to do with the presence of the well-defined−5/3 power
law energy spectrum in the non-equilibrium decay region
even though such spectra are usually derived for and ex-
plained to be the consequence of equilibirum Richardson-
Kolmogorov cascade dynamics (Batchelor (1953)). Could
it be that−5/3 spectra appear already in the production re-
gion as a result of very different dynamics? Would such
dynamics, if they exist, be also responsible for the new dis-
sipation law further downstream or are the two phenomena
unrelated?

Universality properties have been claimed for energy
spectra, for the well-knownQ-R diagram and for aspects
of strain rate production and vortex stretching. All these
properties have been related to the turbulence cascade pro-

1



August 28 - 30, 2013 Poitiers, France

HOM2B

cess (read Tsinober (2009) for a critical discussion). We
therefore address the questions posed in the previous para-
graph by concurrent calculations of energy spectra on the
one hand and vorticity, strain and their production rates on
the other. This post-processing is applied on data obtained
from Direct Numerical Simulations (DNS) of spatially de-
veloping grid-generated turbulence. We use a fractal square
grid (see figure 1) and a single mesh grid where the single
mesh is similar to the largest square on the fractal square
grid.

METHODOLOGY
We assume a fluid of uniform density and kinematic

viscosityν and inflow/outflow boundary conditions in the
streamwise direction with a uniform fluid velocityU∞
(without turbulence) as inflow condition and a 1D convec-
tion equation as outflow condition. The boundary condi-
tions in the two spanwise directions are periodic. In terms
of the lateral thicknessD of the largest bars on the grids, the
inlet Reynolds numberReD ≡ U∞D

ν is 2550 for the fractal
square grid of figure 1 and 4320 for the case of a grid made
of only one square mesh corresponding to the biggest square
of the fractal square grid in figure 1 (but with bar thickness
D that is about 1.7 times larger). Our initial condition for
the velocity field isu ≡ (u,v,w) = (U∞,0,0) everywhere
(u is the streamwise velocity component and(v,w) are the
two spanwise velocity components corresponding to spatial
spanwise coordinates(y,z)).

Each grid is placed in a computational domain with
streamwise lengthLx and spanwise extentsLy = Lz = T.
For the fractal square grid,Lx = 8T = 144D and for the sin-
gle square gridLx = 4T = 40D. Definingx to be the spatial
coordinate in the streamwise direction and the grids to be at
x= 0, the inflow is atx= −10D for the fractal square grid
and atx = −6.5D for the single square. The streamwise
thickness of both turbulence generators is 3tmin wheretmin
is the spanwise thickness of the smallest bars on the frac-
tal square grid. The centres of both grids coincide with the
centreline of the domain.

We solve the incompressible Navier-Stokes equations
on a Cartesian mesh with the numerical codeIncompact3d
which is based on sixth-order compact schemes for spatial
discretization and a third order Adams-Bashforth scheme
for time advancement. To treat the incompressibility con-
dition, a fractional step method requires to solve a Poisson
equation. This equation is fully solved in spectral space,
via the use of relevant 3D Fast Fourier Transforms. The
pressure mesh is staggered from the velocity mesh by half a
mesh, to avoid spurious pressure oscillations. With the help
of the concept of modified wave number, the divergence-
free condition is ensured up to machine accuracy. The mod-
elling of the grids is performed by an Immersed Bound-
ary Method, following a procedure proposed by Parnaudeau
et al. (2008). The present method is a direct forcing ap-
proach that ensures the no-slip boundary condition at the
grid walls. It mimics the effects of a solid surface on the
fluid with an extra forcing in the Navier-Stokes equations.
Full details about the code, its validations and its applica-
tion to grid-generated turbulence can be found in Laizet &
Lamballais (2009); Laizet & Vassilicos (2011).

Because of the size of the simulations, the parallel
version ofIncompact3d has been used for this numerical
work. Based on a highly scalable 2D decomposition library
and a distributed FFT interface, it is possible to use the code
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Figure 1. Fractal square grid and streamwise plots of
10L/λ along centreline andReλ along centreline and line
crossing a big bar at the middle. Fractal grid case.

on thousands of computational cores. More details about
this efficient parallel strategy can be found in Laizet & Li
(2011).

For the turbulent flow generated by the fractal square
grid in figure 1, the Cartesian mesh has 2881 nodes in the
streamwise direction and 360×360 nodes in the other two
directions. For the case of the grid made of only one square,
the Cartesian mesh has 1441 nodes in the streamwise direc-
tion and 360×360 nodes in the other two directions. The
time step is∆t = 0.01tmin/U∞ in both simulations and the
spatial resolution is one to two Kolmogorov length-scalesη
in the vast majority of the computational domain. Our DNS
can therefore be considered to be reasonably well resolved.

Statistics are collected and averages taken over 106

time steps at various points in the flow along the centre-
line normal to either grid; and along a line normal to either
grid and crossing the big or biggest bar at the middle.

Parametric description of the turbulence gen-
erators

The fractal grid that we use is a space-filling fractal
square grid (see Hurst & Vassilicos (2007) where full details
on the design of such grids can be found). Our fractal square
grid hasN = 4 iterations (using the definition ofN given
in Hurst & Vassilicos (2007)). The first iterationj = 0 is
made of a single square which consists of four bars each
of lengthL0 and lateral thicknesst0 = D. The subsequent
iterationsj = 2,3,4 have 4j−1 scaled-down squares made of
bars of lengthL j = Rj

LL0 and lateral thicknessest j = Rj
t t0

(in the plane of the grid, normal to the mean flow) where
RL = 1/2, L0 = 0.5Ly. By definition,L0 = Lmax, LN−1 =
Lmin, t0 = tmax and tN−1 = tmin. The thickness ratiotr ≡
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nx×ny×nz Lx×Ly×Lz (tmin) Grid σ t0 = D

DNS1 2881×360×360 1152×144×144 fractal� 0.5 8.5tmin

DNS2 1441×360×360 576×144×144 Single mesh 0.16 14.4tmin

Table 1. Numerical parameters of the simulations and characteristics of the two grids.
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Figure 2. Energy spectra at differentx/x∗ = 0,0.1,0.2 (the
straight line has a−5/3 slope for reference).Q-R diagram
at x/x∗ = 0.2. Centreline, fractal grid.

tmax/tmin, i.e. the ratio between the lateral thicknesses of the
largest to the smallest bars, istr = 8.5 (the value oftr can be
used to deriveRt ). The blockage ratioσ of our fractal grid,
defined as the ratio of its total lateral area toT2 = Ly×Lz,
is σ = 50%. The other grid hasσ = 16%. See Table 1 for a
summary.

RESULTS
Figure 1 shows, as functions ofx/x∗ (where x∗ is

the wake-interaction length-scale defined for grid-generated
turbulence by Mazellier & Vassilicos (2010), but see also
Gomes-Fernandeset al. (2012)), L/λ and Reλ along the
centreline for the fractal grid and along a line crossing at the
middle of a biggest bar on the fractal grid. The significance
of x∗ is that the positionxpeakof the turbulence peak scales
with it along the centreline. The centreline peak inReλ is at
xpeak≈ 0.4x∗ in figure 1 in approximate agreement with the
laboratory experiments of Mazellier & Vassilicos (2010);
Gomes-Fernandeset al. (2012); Discettiet al. (2013).

At x/x∗ < 0.4 the turbulence fluctuating velocities are
known to be non-gaussian but they are also known to be
gaussian atx/x∗ > 0.4 (Mazellier & Vassilicos (2010)). We
see clearly in figure 1 the result previously reported from
the laboratory experiments of Seoud & Vassilicos (2007);
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Figure 3. Energy spectrum andQ-R diagram atx/x∗ = 1
(the straight line in the spectral plot has a−5/3 slope for
reference). Centreline, fractal grid.

Mazellier & Vassilicos (2010); Valente & Vassilicos (2011,
2012); Gomes-Fernandeset al.(2012); Discettiet al.(2013)
that, in the decay regionx/x∗ > 0.4, L/λ remains approxi-
mately constant asReλ decays along the centreline: i.e. as
the local Reynolds number decreases, the range of excited
length-scales in the turbulence spectrum remains about the
same. This behaviour does not tie up easily with usual
Richardson-Kolmogorov cascade phenomenology and im-
plies, in particular, an unusual behaviour for the dissipation
rate which is determined by the turbulent strain rate field.
Figure 1 shows a more classical behaviour in the lee of the
big bar consistent withCε = Const, however with overall
smaller or comparable Reynolds number values.

The study of the turbulent strain rate fieldsi j closely
involves the turbulence fluctuating vorticityωi . One way to
obtain some insight into their statistics is in terms of theQ-
R diagram (Tsinober (2009)) whereQ ≡ 1

4(ωiωi −2si j si j )

and R ≡ − 1
3(si j sjkski +

3
4ωisi j ω j ). All data to this day

(see Tsinober (2009)) indicate that this diagram has the
tear drop shape shown in figures 3 and 4 in many turbu-
lent flows. This is indeed the case in our flows either far
enough downstream along the centreline (x/x∗ = 1 in figure
3) or all along a streamwise line crossing the largest bar at
the middle (see figure 4). However, at distances from the
grid which are smaller than aboutxpeak the tear drop shape
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Figure 4. Energy spectra at differentx/x∗ =

0.025,0.08,0.24 (the straight line has a−5/3 slope
for reference).Q-R diagram atx/x∗ = 0.025. Data along
line crossing big bar of single square grid.

is not so clearly defined. This is particularly significant be-
cause, as shown in figure 2, the energy spectrum develops
a −5/3 power-law shape in exactly such a region (around
x/x∗ = 0.2 in the case of the fractal grid). This also happens
to be a region of highly non-gaussian, i.e. very intermittent,
fluctuating velocities. Further downstream along the cen-
treline, the energy spectrum loses its power law shape as
the local Reynolds number decays but the flow acquires the
well-known Q-R tear-drop shape (see Figure 3). The re-
sults described in this paragraph hold for both turbulence
generators, the main differences being the normalised peak
distancexpeak/x∗ and the normalised distancex/x∗ where
the−5/3 spectrum appears along the centreline; both these
two normalised distances are smaller for the fractal square
grid (see figures 5 and 6 for results equivalent to those of
figures 2 and 3 but for the single square grid).

Along a streamwise line in a neighboring region dom-
inated by the wake of the big bar theQ-R diagram adopts
a clear tear-drop shape (though over a reduced quantitative
extent) (see figure 4) from the outset and keeps it (whilst
also extending the quantitative extent) throughout this line
in our computations. The energy spectrum emerges with a
broad range of excited power-law scales from the outset too
(very smallx/x∗, see figure 4) but evolves towards a−5/3
spectrum over an increasing range of scales as it spatially
develops downstream. This increase in the range of scales
is brought about by the decrease of the Kolmogorov mi-
croscale with distance from the grid owing to the increasing
local Reynolds number.

Note that the−5/3 range is set in a very different way
in the centreline region. Very close to the grid along the
centreline, the energy spectrum is dominated by two excited
frequencies, one being the shedding frequency of the big bar
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Figure 5. Energy spectra at differentx/x∗ = 0,0.21,0.4
(the straight line has a−5/3 slope for reference).Q-R dia-
gram atx/x∗ = 0.4. Data along centerline of single square
grid.
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Figure 6. Energy spectrum andQ-R diagram atx/x∗ = 1
(the straight line in the spectral plot has a−5/3 slope for
reference). Centreline, single square grid.
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Figure 7. Plots ofQw, Qs andQ on the left and ofRw, Rs

andR on the right as functions ofx/x∗. Centreline of the
fractal square grid.

wakes and the other characterising the secondary instability
of the shear-layers (Donget al. (2006)). These frequencies
differ by a factor of about 40 in both our flows. The range
over which the−5/3 spectrum develops is determined by
these two frequencies and its extent is given by their ratio
40. Furthermore the localReλ at the location where the
−5/3 power-law first appears (x/x∗ ≈ 0.2 in the case of the
fractal grid) is no more than about 60 (see figure 1), way too
small for such a well-defined -5/3 power law over more than
a decade (see figure 2). This is therefore a spectrum where
the range of length-scales is directly set by inlet conditions
and does not obviously relate to Kolmogorov scalings or
local Reynolds number values.

Important differences in interscale and velocity gradi-
ent dynamics as sampled along the centreline on the one
hand or the streamwise line dominated by the big bar on the
other can also be seen in the streamwise developments of
the rates of mean enstrophy and strain rate production.

DefiningQw ≡ 1
4ω2, Qs ≡− 1

2si j si j , Rw ≡− 1
4ωiω jsi j

andRs ≡ − 1
3si j sjkski, in figure 7 we plot< Qw >, < Qs >

and< Q >=< Qw+Qs > as functions ofx/x∗ as well as
< Rw >, < Rs > and< R>=< Rw+Rs > as functions of
x/x∗ along the centerline for the fractal grid (similar results
are obtained for the single square grid and a similar dis-
cussion can be made). Firstly we note that< Q >= 0 and
< R>= 0 throughout the domain along the centerline. This
is not a trivial result because our turbulent flows are not ho-
mogeneous, particularly atx < x∗ (see Seoud & Vassilicos
(2007); Mazellier & Vassilicos (2010); Laizet & Vassilicos
(2011); Valente & Vassilicos (2011)). Secondly, we note
the remarkable region 0< x/x∗ < 0.16 along the centre-
line where< Rw >=< Rs >= 0 but< Qw > and< Qs >
are not zero. Then something happens aroundx/x∗ ≈ 0.16
which sets off non-zero values of average enstrophy and
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Figure 8. Plots ofQw, Qs andQ on the left and ofRw, Rs

andR on the right as functions ofx/x∗ along the stream-
wise straight line which crosses one of the largest bars of
the fractal square grid in the middle.

strain rate production rates. This is also about where the
energy spectrum adopts its well-defined−5/3 power-law
shape over more than one decade (see figure 2). At this
point,< Rw > and< Rs> start growing in magnitude (with
opposite signs to keep< R>= 0) and reach a peak where
the local Reynolds number peaks (see figure 1).< Qw >
and< Qs > peak at the same point. Further downstream,
< Rw >, < Rs >, < Qw >, < Qs > andReλ continuously
decay together.

The negative sign of< Rw > throughout the region
where it is non-zero implies positive enstrophy production
which would imply a creation of increasingly small-scales
(perhaps a cascade of sorts) in the sense that fluctuating ve-
locity derivatives on average increase. No such behaviour
seems to exist in the region 0< x/x∗ < 0.16 along the cen-
treline where the energy spectrum progressively develops
towards the best defined−5/3 power-law over the widest
range in the entire flow domain (see figure 2). The increase
and then decrease of enstrophy along the centerline in this
region may have to do with enstrophy being advected from
nearby then left to decay as it is swept downstream for as
long as enstrophy production has not yet started.

The situation is very different in the lee of one of the
largest bars of the grid as can be seen in figure 8 where
Qw, Qs and Q and Rw, Rs and R are plotted as in figure
7 but along the streamwise straight line which crosses one
of the largest bars of the fractal square grid in the middle.
This is a region dominated by the planar wake of one of
the biggest bars (we present the plots obtained for the frac-
tal grid but similar results are obtained for the single square
grid and a similar discussion can be made). In stark contrast
with the behviour along the centreline, average enstrophy
and strain rate production rates start building up immedi-
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ately after the bar and so does the power-law energy spec-
trum which seems to develop in a more usual Richardson-
Kolmogorov fashion as Reynolds number increases (see fig-
ure 4 and keep in mind that a similar figure can be provided
for the fractal square grid). Similarly to figure 7, though,
< Q>= 0 and< R>= 0 throughout the domain along the
streamwise line inside the planar wake of a largest bar.

CONCLUSION
Our simulations have revealed the coexistence side by

side of two very different mechanisms for the generation of
−5/3 energy spectra. One appears to be based on strain
rate and enstrophy production and a cascade which has at-
tributes similar to that of a Richardson-Kolmogorov phe-
nomenology. The other is very different and appears less
reliant on local Reynolds number and strain rate and en-
stropy production, however much more dependent on initial
conditions and global Reynolds number. The initial condi-
tions impact via the properties, e.g. frequencies, of vortex
shedding and secondary instabilities and may therefore have
different effects at different Reynolds number. It will be
important to extend the present study to similar but higher
Reynolds number flows.

It is unclear whether the centreline mechanism for gen-
erating a non-Kologorov−5/3 energy spectrum is also re-
sponsible for the new non-equilibrium dissipation law re-
cently discovered in the wind tunnel and water channel ex-
periments of Seoud & Vassilicos (2007); Mazellier & Vas-
silicos (2010); Valente & Vassilicos (2011, 2012); Gomes-
Fernandeset al. (2012); Discettiet al. (2013); Nagataet al.
(2013). In the case of the single square grid we do not ob-
serve this new dissipation law in the present simulations but
a similar grid to our single square grid does return this law
in the decaying region of the wind tunnel experiment of Va-
lente & Vassilicos (2012). However, the Reynolds number
in this wind tunnel experiment is much larger than here and
this could be a factor to take into account. The cross-over
Reynolds number value for the new dissipation law to be
possible may well depend on the type of grid and may, in
fact, be lower for the present fractal square grid than for the
present single squre grid.
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