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ABSTRACT
We carry out direct numerical simulation of experi-

mental grid turbulence, for which the mesh Reynolds num-
ber is 2500. The grid is directly constructed in the computa-
tional domain. The streamwise computational domain size
is >100 times the mesh size. The value of the decay expo-
nentn is estimated asn ≈ 1.36 by using a ratio defined by
the turbulent kinetic energy and its dissipation. The prevail-
ing perspective is that the memory of the turbulence cannot
be considered as short. In this paper, we propose a promoter
that focuses on the generation of turbulence using the grid,
not on the shape of the grid, as addressed in previous studies
(Hurst & Vassilicos (2007); Krogstad & Davidson (2011)),
from a multiscale perspective and investigate the effects of
the turbulence-generating method on the decay exponentn.
Specifically,n is increased ton ≈ 1.53 and 1.41 because of
the changes in the initial conditions.

INTRODUCTION
Grid turbulence is the most fundamental type of turbu-

lent flow and has been studied extensively (Pope (2000)).
Grid turbulence usually becomes highly homogeneous in
the downstream region (Hinze (1975)). Its decay follows
a power law, which includes a decay coefficient, the virtual
origin, and the decay exponent (Mohamed & LaRue (1990);
Pope (2000)) applicable in the region. The decay exponent
is directly related to the fundamental characteristics of the
decaying grid turbulence. If the grid turbulence is modeled
by the Saffman turbulence (Hinze (1975)), the decay ex-

ponent will be close to 6/5 (Krogstad & Davidson (2010))
when the turbulent Reynolds number is sufficiently high.

Mohamed & LaRue (1990) proposed a method in
which a search is performed for the fit that gives the smallest
variance between the data and the form of the decay power
law. Wang & George (2002) proposed an indirect means of
obtaining the power law through the Taylor microscale. In
this work, we employ another method to estimate the decay
exponent and the virtual origin by focusing on a principal
relation in grid turbulence.

Wakes produced by the grid are significantly affected
by the grid configuration (Mohamed & LaRue (1990);
Lavoieet al. (2005)). The prevailing perspective is that the
memory of the generated turbulence cannot be considered
to be short (Davidson (2004)). In addition, scatter of the
decay exponent among experiments may reflect the depen-
dence of the decay exponent on initial conditions (George
(1992)).

In recent previous studies (mainly Hurst & Vassilicos
(2007)), the turbulence generated by using a grid of a spe-
cific fractal shape has been investigated. However, in these
previous studies, the concept of multiscale generation of
turbulence was added to the generation of turbulence by fo-
cusing on the shape of the grid, not on the generation of
turbulence by the grid. In this paper, we propose a pro-
moter that focuses on the generation of turbulence using the
grid, not on the shape of the grid, and we investigate the ef-
fects of the initial conditions on the decay exponent of grid
turbulence.
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Figure 1. Schematic of the computational domain and the
coordinate system.

CLASSICAL GRID TURBULENCE
Numerical simulation

The turbulence-generating grid used in this study is a
biplanar grid composed of rectangular bars; the solidityσ
of the grid is 0.36. Therefore, the ratio between the mesh
size M [m] and the width of the square barsd [m], M/d,
is exactly 5. This is a useful value because most of the
grids used for turbulence investigations also haveM/d ≈ 5
(Hinze (1975)). The chosen value ofσ is also similar to
that used in previous experiments (for example, Mohamed
& LaRue (1990)). Note that the physical length of the mesh
sizeM does not need to be set in this simulation because the
mesh size is a characteristic length of the mesh Reynolds
number ReM , defined as ReM ≡ UoM/ν , whereUo [m/s] is
a uniform inflow velocity used as the characteristic velocity
andν [m2/s] is the kinematic viscosity.

In this simulation, ReM is set to be 2500. Although
this value is smaller than those of previous experiments
(mainly, Comte-Bellot & Corrsin (1966); Mohamed &
LaRue (1990); Lavoieet al. (2007); Krogstad & David-
son (2010)), it is similar to those of a previous experiment
(Kurian & Fransson (2009)).

A schematic of the computational domain size and co-
ordinate system is shown in Figure 1. Computational do-
main size, which is normalized by the mesh size, isLx ×
Ly × Lz = 112× 8× 8, and grid points areNx × Ny × Nz =
2304× 160× 160. We also carried out a simulation un-
der Nx × Ny × Nz = 2304× 256× 256 using the same size
computational domain and confirmed that there are hardly
any differences in results between these. In previous ex-
periments, the value ofLy is set to be larger than that of
the present value. The integral length scale increases in
the streamwise direction and has a value similar to that
of the mesh size at(x/M)/ReM = 100/2500 regardless of
ReM (Kurian & Fransson (2009)). Thus, the ratio between
Ly(= Lz) and the integral length scale atx/M = 100 is
about 8. This value is similar to or is larger than those ob-
tained in previous direct numerical simulation (DNS) works
(Jiménezet al. (1993); Kanedaet al. (2003)). Note that the
side walls of the wind tunnel have no effect in this sim-
ulation because a periodic condition is applied to cross-
sectional directions in contrast to the experiments.

For the governing equations, we used the incompress-
ible continuity equation and the Navier–Stokes (N-S) equa-
tions:

∂ ũi

∂xi
= 0, (1)

∂ ũi

∂ t
+

∂ ũi ũ j

∂x j
= − ∂ p

∂xi
+

1
ReM

∂ 2ũi

∂x j ∂x j
+Fi , (2)

where the nondimensional parameter included in the above

governing equation is the mesh Reynolds number ReM .
The inflow boundary condition is the uniform flow con-

dition. At the exit, we applied a convective outflow condi-
tion, in which the convective velocity at the exit is set to
be the cross-sectional-averaged free-stream velocity, whose
normalized value is exactly unity. A biplaner grid was nu-
merically constructed by using the force term in the N-S
equation.

A fractional step method, based on a third-order
Runge–Kutta method, was applied for solving the govern-
ing equations. The spatial derivatives of the continuity
equation terms and the nonlinear terms in the N-S equations
were discretized by using a fourth-order central difference
scheme (Morinishiet al. (1998)). The Poisson equation,
which must be solved for each fractional step, was solved
by using a direct solver based on a two-dimensional fast
Fourier transform and a matrix algorithm directly. There-
fore, a high level of mass conservation was realized. Be-
cause of this and the introduction of the discretization
scheme of Morinishiet al. (1998), conservation of turbu-
lent kinetic energy (so-called secondary conservation) was
highly maintained in our simulation. Specifically, the accu-
racy of the secondary conservation is of the third order in
the time increment, which is the same order as that of the
Runge–Kutta scheme. In this simulation, by setting a fine
grid system around the grid to avoid incidences of numer-
ical instability, no numerical viscosity or filtering schemes
had to be applied, thereby avoiding any potential erosion in
the secondary conservation.

Because of the differences between the differential or-
ders of the viscous terms and the other terms, a higher-
order differential scheme would be effective for maintain-
ing the spatial resolution of the viscous terms. Thus, the
order of accuracy of the differential schemes used for the
viscous terms was set to be higher than those for the other
terms (Suzukiet al.(2013)), thus improving the accuracy of
higher-order statistics and various spectra. Note that the in-
crease in the required computational time will not be crucial
when incompressible flow is simulated because the intro-
duction of a higher-order scheme for the viscous terms does
not increase the computational cost for solving the Poisson
equation (Morinishiet al. (1998)).

Validation of present DNS results We ex-
amined the accuracy of the numerical construction for the
turbulence-generating grid in terms of the pressure drop
across the grid. Empirical laws for the pressure drop re-
sulting from various turbulence-generating grids have been
shown in a previous study (Roach (1987)). An empirical
law for a square mesh of square bars is given as

∆P = 0.98(1/β 2 −1)1.09, (3)

where∆P is the pressure drop normalized by the inflow dy-
namic pressure andβ = 1− σ . ∆P estimated by using this
empirical law is about 1.46. The present value of∆P was
about 1.54, so the relative difference between these is about
5.5%.

Results and discussion
Power-law decay of turbulent kinetic en-

ergy The flow field downstream of the turbulence-
generating grid is separated into three regions. The first
is the developing region behind the grid where wakes gen-
erated by the bars are sequenced; here, no section of the
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flow is homogeneous and isotropic. Even if the grid is suf-
ficiently spatially uniform, there will be inhomogeneities in
the lateral direction of the flow, which may be due to wake
instability (Hinze (1975)). The region of the final period
of decay, in which large-scale eddies are directly affected
by viscous effects, lies sufficiently far downstream from the
grid.

Grid turbulence usually becomes highly homogeneous
when x/M > 10–15 (Hinze (1975)). A decay power law
form is applicable in the region between the first region
and the region of the final period of decay (Mohamed &
LaRue (1990)). Specifically, by using Taylor’s hypothesis
for conversion from time to downstream position, the nor-
mal stresses⟨u2⟩,⟨v2⟩, and⟨w2⟩ for the streamwise, lateral,
and spanwise directions, respectively, and turbulent kinetic
energy (TKE)k = 1

2(⟨u2⟩ + ⟨v2⟩ + ⟨w2⟩) decay as power
laws, can be written as as

k = A(x/M −xo/M)−n = AX−n, (4)

whereũ = U + u, U = ⟨ũ⟩, ⟨ ⟩ denotes ensemble average.
The normal stresses and the TKE are quantities normalized
by the square of the free-stream velocityUo. The above re-
lation includes three constants:A is the decay coefficient,
xo is the virtual origin, andn is the decay exponent (Mo-
hamed & LaRue (1990); Pope (2000)). Note that the de-
cay coefficient is directly related to the pressure drop across
the grid (Kistler & Vrebalovich (1966)). In particular, a re-
lation A ∝ 1/CD is proposed with a concept of the linear
decay law, whereCD is the drag per unit area of the grid
(Hinze (1975)). Indeed,A varies with the grid configuration
(Mohamed & LaRue (1990)).

These three constants are usually estimated by fit-
ting the relation to the measured profiles. Data near the
grid, where the flow is inhomogeneous, anisotropic and the
power-law decay is inapplicable, should not be used to de-
termine the constants. In conventional grid turbulence for
grids with a relatively low solidity, it is considered good
practice to restrict tox/M > 25–40 to avoid the inhomoge-
neous region (Comte-Bellot & Corrsin (1966)). In fact, for
example, measurements were taken at a far enough down-
stream location (Lavoieet al. (2007)). In another case, Mo-
hamed & LaRue (1990) eliminated data atx/M ≤ 40 in the
estimation of the constants. This elimination is also applied
to data when the mesh Reynolds number ReM is low to
moderate (Kurian & Fransson (2009)). The order of the crit-
ical streamwise point normalized by the mesh size would be
insensitive to the value of ReM (Kurian & Fransson (2009)).

In the grid turbulence field obtained by using the
present DNS, the following characteristics are evident (Fig.
2): The constancy ofk/X−n in the streamwise direction in-
dicates that the form of the decay power law is applicable
only in the downstream region. The value of the normal-
ized critical streamwise point is about 60, which agrees with
previous estimated values (Kurian & Fransson (2009)) with
similar ReM quantitatively. It should be noted that the value
of n is discussed in the next subsection because, generally,n
can be a function ofxo/M even if the error of a least-squares
fitting can be minimized (Mohamed & LaRue (1990)). The
value of the virtual originxo/M in the figure is set to be
xo/M = 4, which is only provisional, in this estimation.

How to estimate n and xo/M The decay ex-
ponentn is directly related to the fundamental characteris-
tics of decaying grid turbulence. Most grid turbulence is
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Figure 2. Streamwise profiles ofk/X−n in upstream and
downstream regions, wheren is the decay exponent.

well modeled not by the Batchelor turbulence but by the
Saffman turbulence, as pointed out more than three decades
ago (Hinze (1975)), so the value ofn will be close to not
10/7 but 6/5 when the turbulent Reynolds number is high
enough (Krogstad & Davidson (2010)).

As briefly mentioned above, there are three unknowns
that must be determined in a least-squares fitting. Mohamed
& LaRue (1990) proposed a method in which a search is
performed for the fit that gives the smallest variance be-
tween the data and Eq. (4). They concluded that the root
mean square values of the difference do not differ signifi-
cantly for different values of the virtual origin. As a con-
sequence, an estimated value ofn depending onxo/M is
allowed (Mohamed & LaRue (1990)); therefore, they took
the virtual origin to be zero. A method based on Mo-
hamed & LaRue (1990)’s method is applied to fit the form
of the decay power law to the data from recent experiments
(Krogstad & Davidson (2010, 2011); Kurian & Fransson
(2009)).

Wang & George (2002) proposed an indirect means of
obtaining the power law through the Taylor microscaleλ ,
for which

dλ 2

dt
=

10
nU

1
ReM

, (5)

where the relation is a normalized formula, and, in contrast
to the method applied by Mohamed & LaRue (1990),n is
only included in the relation to the fit. This method was
applied to estimate the decay exponent of decaying turbu-
lence found in previous DNS works (Jiménezet al. (1993);
de Bruyn Kops & Riley (1998)). Unfortunately, however, it
may not be practical to use this relation owing to significant
noise (Lavoieet al. (2007)).

In this work, we apply another way to estimaten and
xo/M. A principal relation in grid turbulence in the down-
stream region is as follows:

dk
dt

= U
dk
dX

= −ε. (6)

By also applyingk = AX−n andU = 1 in the downstream
region, we obtain

k/ε = X/n = (x/M −xo/M)/n. (7)

Therefore,n andxo/M are estimated by fitting Eq. (7) to
the data set. The main difference between these methods
lies in the number of unknowns.

In this work, indeed, there are a region wherek/ε in-
creases linearly downstream (Fig. 3). By fitting Eq. (7),n
andxo/M are estimated as

n ≈ 1.36 andxo/M ≈ 4.93. (8)
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Figure 3. Streamwise profiles ofk/ε (the upper figure)
andX/(k/ε) (the lower figure), whereX = x/M −xo/M.

Decay exponent of TKE The N-S equation
turns out to have a constant turbulent Reynolds num-
ber as an invariant, implying a decay exponent of unity,
which is expected from dimensional analysis and is the
so-called linear decay law. Early experimental results
seem to support the prediction thatn = 1 (for example,
Kistler & Vrebalovich (1966)). However, later experi-
ments (mainly Comte-Bellot & Corrsin (1966); Mohamed
& LaRue (1990)) led ton > 1. In particular, the value ofn
varies between 1.2 and 1.35 in most experiments, with the
average value ofn≈ 1.25 being close to the theoretical pre-
diction of Saffman turbulence (Hinze (1975)). In fact, the
invariant of grid turbulence may be that of Saffman turbu-
lence (Krogstad & Davidson (2010)).

The estimated value ofn in the grid turbulence
field is about 1.36 (the lower panel of Fig. 3) and
is slightly larger than those obtained in previous experi-
ments (mainly Comte-Bellot & Corrsin (1966); Mohamed
& LaRue (1990); Krogstad & Davidson (2010)). There is
a possibility thatn increases as ReM decreases (Kurian &
Fransson (2009)). The present value qualitatively agrees
with this tendency. Note that the present grid turbulence
does not result in the final period of decay, because the
present value is sufficiently smaller than 5/2, which is the
decay exponent in this stage.

One may note that the present value is slightly larger
than that of the Saffman turbulence. However, this differ-
ence is not significant if the present grid turbulence is not
modeled by Saffman turbulence, becausen may be affected
by varying the dissipation constant in the streamwise direc-
tion (Krogstad & Davidson (2010)). The exponent of the
integral scale is also needed to discuss characteristics of the
invariant.

MULTISCALE-GENERATED GRID TURBU-
LENCE
A promoter for multiscale-generated turbu-
lence

Wakes produced by the grid are significantly affected
by the grid configuration of the turbulence-generating grid
(Mohamed & LaRue (1990)). For instance, round-rod grids
produce more periodic structures than square-bar grids

Ly× LzLy/2× Lz/2

with maintaining value
of the velocity gradient tensor

turbulence generating grid

Lr

5M

Uo

a promoter generating turbulence test section

Figure 4. Schematic of the inflow conditions for the pro-
moter used for multiscale-generated turbulence.

2Lr

…

Lr

each statistical distribution

½ Lr¼ Lr

∞

self-similar

Figure 5. Schematics showing a comparison between
a classical grid and the promoter used for multiscale-
generated turbulence.

(Lavoieet al. (2005)). Although it is often considered that
turbulence has a short memory, there is a possibility that
this perspective need not be true (Davidson (2004)).

Varying values of the decay exponentn have been ob-
tained in most of the previous experiments (Hinze (1975)).
This scatter may reflect the dependence of the decay expo-
nent on initial conditions, i.e., on how turbulence was pro-
duced (George (1992)). Different grid geometries produce
variations of the decay exponent and affect the structure of
turbulence (Lavoieet al. (2005)). The effects of initial con-
ditions onn are being experimentally investigated in grid
turbulence (Lavoieet al. (2005)), in which only the shape
of the bars are changed. In contrast, there is one conclusion
thatn is insensitive to various initial conditions and only the
decay coefficientA is mainly affected by the grid configu-
ration (Mohamed & LaRue (1990)).

The relation between the shape of a turbulence-
generating grid and the turbulence generated by it has been
studied (Mohamed & LaRue (1990); Lavoieet al. (2007);
Hurst & Vassilicos (2007); Krogstad & Davidson (2011)).
Previous studies (Hurst & Vassilicos (2007); Mazellier &
Vassilicos (2010); Valente & Vassilicos (2011); Krogstad
& Davidson (2011)) have been performed to investigate
the turbulence generated using a grid of a specific frac-
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Table 1. Numerical conditions. Run CG is the same as for
the previous grid turbulence.σ is the solidity of the largest
grid. Krogstad & Davidson (2011) and Hurst & Vassilicos
(2007) are referred to as KD (2011) and HV (2007), respec-
tively.

Grid N σ

Run CG CG − 0.36

Run MG1 MG (Lr = 10) ∞ 0.36

Run MG2 MG (Lr = 20) ∞ 0.36

KD (2011) CG − 0.36

KD (2011) MG of HV (2007) 3 0.23,0.17

tal shape (MG, hereinafter); such turbulence is often re-
ferred to as fractal-generated turbulence (Hurst & Vassili-
cos (2007)). In particular, the fractal-generated turbulence
generated by using the square-type fractal grid proposed by
Hurst & Vassilicos (2007) has been studied by other re-
searchers (mainly Mazellier & Vassilicos (2010); Valente
& Vassilicos (2011)).

However, in the previous studies, the concept of multi-
scale generation of turbulence was added to the generation
of turbulence focusing on the shape of the grid, not on the
generation of turbulence by the grid. In this work, we pro-
pose a promoter that focuses on the generation of turbulence
using the grid, not on the shape of the grid. Then, we nu-
merically investigate a series of grid turbulence generated
by a promoter based on the concept proposed in this study.

We attempt to add the concept to classical grid turbu-
lence, shown in the previous section, by only changing the
inflow boundary condition to be

ũi

(
−5,

y
2

± hLy

2
,

z
2

± hLz

2

)
=

1
2

ũi(Lr −5,y,z) (9)

while maintaining the value of the velocity gradient tensor.
Figure 4 shows a schematic of the inflow boundary con-
ditions for the promoter used for multiscale generation of
grid turbulence. The concept of this multiscale-generated
grid turbulence has been inspired by the recycling method
for turbulent boundary layer of Lundet al. (1998).

By processing our calculations until grid turbulence
is fully developed, virtually, we considered the multiscale-
generated grid turbulence to have been generated. Figure 5
shows schematics comparing classical grid turbulence and
multiscale-generated grid turbulence; the upper part of this
figure shows the classical grid turbulence and the lower part
shows the grid turbulence generated by the proposed pro-
moter. Iteration numberN (Hurst & Vassilicos (2007)) of
the promoter is sufficiently large. The streamwise size of
the promoter is exactly 2Lr becauseLr (1+1/2+1/22 + · ·
·) = Lr/(1−1/2) = 2Lr .

Numerical simulation
The governing equations, numerical techniques, and

numerical conditions such as grid points are the same as
those of the classical grid turbulence shown in the previous
section. The turbulence-generating grid is also the same.Lr

is set to beLr = 10 or 20 (referred to as Run MG1 and Run
MG2, respectively). Run CG is a run for a classical grid tur-
bulence (CG). Table 1 lists the numerical conditions of the

0 20 40 60 80 100
0

20

40

60

80

k/
ε

x/M

 k/ε = X / 1.6, 
 k/ε = X / 1.2, 

where xo/M  = 4.93

 Run CG
 Run MG1
 Run MG2

Figure 6. Comparison of the streamwise profile ofk/ε
between the classical and multiscale-generated grid turbu-
lence cases.

Table 2. Values of the decay exponent and the virtual ori-
gin.

Run ID n of k x0/M

Run CG ≈ 1.36 ≈ 4.93

Run MG1 ≈ 1.53 ≈ 1.96

Run MG2 ≈ 1.41 ≈ 3.80

present runs for the multiscale-generated grid turbulence,
compared with those of a previous experiment (Krogstad &
Davidson (2011)). It should be noted that the turbulence-
generating method of Krogstad & Davidson (2011) is not

the same as that of our simulation.t1/(N−1)
r = dl /dl+1 = 2,

wheretr is defined as the ratio of the largest and the smallest
values ofd (Hurst & Vassilicos (2007)), andl is number of
each stage.

Results and discussion
Effects on the decay exponent of TKE

Figure 6 shows the streamwise profile ofk/ε, for which
the gradient is 1/n (see Eq. (7)). The linearly increasing
profiles of the multiscale-generated grid turbulence indicate
that the TKE still follows a power law decay.

Lines for two n values (n = 1.2 and 1.6) are also
drawn in the figure. As shown in the figure, the multiscale-
generated grid turbulence profiles fork/ε are closer for
n = 1.6, but not forn = 1.2, implying thatn is increasingly
affected by changed initial conditions. Specific values ofn,
estimated in the region ofx/M > 30, are listed in Table 2.
As listed in the table, values of the virtual origin are also
slightly changed.

The increase in the decay exponent resulting from
changed initial conditions has also been investigated in pre-
vious experiments (Krogstad & Davidson (2011)) in which
the turbulence-generating grid used is a cross grid (Hurst
& Vassilicos (2007)) and for another experiment (Kurian &
Fransson (2009)) with a similar ReM value. Figure 7 com-
pares the present results of the decay exponent with those
of Kurian & Fransson (2009) and Krogstad & Davidson
(2011), where those of Krogstad & Davidson (2011) in the
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Figure 7. Comparison of the decay exponentn between
the present DNS and previous experiments (Kurian &
Fransson (2009); Krogstad & Davidson (2011)).

figure are averaged value over three methods to estimaten
(see Krogstad & Davidson (2011)). As shown in the figure,
the increase in the present decay exponent because of the
change in initial conditions agrees with that of Krogstad &
Davidson (2011) qualitatively. Although the largest grid of
the present DNS, which is a grid of the first stage of grid
generation, see Fig.5, is similar to that used in previous
work, there are some differences in flow conditions and grid
configurations (such as ReM , N, andσ (Table 1)) and in the
turbulence-generating method. Thus, further investigations
and discussion will be needed to clarify the effects of initial
conditions on the increase inn to n ≈ 1.53 and 1.41.

CONCLUSION
We carried out direct numerical simulation of grid tur-

bulence, for which the mesh Reynolds number is 2500. The
value of the decay exponentn and virtual originxo/M were
estimated asn ≈ 1.36 andxo/M ≈ 4.93, respectively, by
using a time scale defined by using turbulent kinetic energy
and its dissipation. Then, we proposed a promoter to gener-
ate grid turbulence from a multiscale perspective and inves-
tigated the effects of our turbulence-generating method on
the decay exponentn. The value ofn was found to increase
owing to changes in the initial conditions.
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