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ABSTRACT

For this study a spatially high-order, shock captur-
ing non-oscillatory finite volume method is combined with
a weakly compressible flow modeling. As an alterna-
tive to methods based on the incompressibility assump-
tion this weakly compressible high-resolution approach is
both robust to underresolution and spatially highly accu-
rate. The implicit subgrid-scale (SGS) model permits phys-
ically consistent underresolved simulations of incompress-
ible, isotropic turbulent flows at very high Reynolds num-
bers.

Underresolved three-dimensional Taylor-Green vortex
(TGV) simulations at finite Reynolds numbers are com-
pared to reference data. Hereby, direct numerical simula-
tion (DNS) data for Re ≤ 3000 is used to assess the accu-
racy and physical consistency. Large eddy simulation (LES)
predictions with two explicit as well as one implicit SGS
model help to benchmark the SGS modeling capabilities.
The weakly compressible high-resolution approach gives
most accurate predictions for the viscous TGV even when
resolution is very low. In contrast to the LES our implicit
LES predict the laminar-turbulent transition physically con-
sistently. The dissipation rates compare to those of the ref-
erence implicit LES, however, at much lower computational
costs and mathematical complexity.

As our weakly compressible high-resolution approach
is designed for the physically consistent simulation of very
high Re turbulent flows, an infite Re TGV is studied for an
extended period of time. Thereby, the evolution at times
beyond the obviously temporary quasi-isotropic state are of
particular interest. For the high and infinite Re TGV flows,
transition to the isotropic state is observed. Its onset and
end are identifiable from a macroscopic energy redistribu-
tion within the low-modes. Subsequently, the inertial sub-
range scales according to E(k) ∝ k−5/3 and is self-similar
in time.

1 Introduction
The three-dimensional Taylor-Green vortex (TGV)

G. I. Taylor (1937) is the most simple generic flow to study
the generation and evolution of small scale turbulent struc-
tures by vortex stretching and the evolution of isotropic tur-
bulence in time. Brachet et al. M.E. Brachet (1984) have
investigated the transitioning, viscous TGV with direct nu-
merical simulation (DNS) resolving the entire interacting
range of wavenumbers.

Numerical simulations of high Reynolds number tur-
bulent flows are out of reach for DNS. Explicit large eddy
simulations (LES) can significantly decrease computational
costs. The Smagorinsky model of J.Smagorinsky (1963)
and the dynamic Smagorinsky model of Sagaut (2005) are
most popular for closure of the subgrid scale (SGS) stress
term. The nonlinear regularization mechanism of high-
order finite-volume schemes with shock-capturing capabil-
ities can be used for implicit LES, for a review refer to
Grinstein et al. (2007). A spectral extension of modified
differential equation analysis (MDEA), see ref. Margolin
& Rider (2002), has allowed to design the truncation error
of a nonlinear scheme such that it recovers the theoretical
spectral eddy viscosity when the flow is turbulent and un-
derresolved. Such a situation, where the non-negligible lo-
cal truncation error of a numerical scheme recovers correct
physical SGS behaviour, is called physically consistent be-
haviour, see ref. Balsara & Shu (2000); Hickel et al. (2006).
Apart from the flux-corrected transport (FCT), successfully
employed for free shear and wallbounded flows, see ref.
Fureby & Grinstein (2002), the piecewise parabolic method
(PPM), the multidimensional positive definite advection
transport algorithm (MPDATA) method, see ref. Smo-
larkiewicz & Margolin (1998); Domaradzki et al. (2003) as
well as weighted essentially non-oscillatory (WENO) Bal-
sara & Shu (2000) schemes have been proposed for im-
plicit LES, see ref. Grinstein & Fureby (2006); Grinstein
et al. (2007); Thornber et al. (2007). Adams et al. (2004)
and Hickel et al. (2006) have developed the adaptive lo-
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cal deconvolution method (ALDM) as the first physically
consistent ILES model. The ALDM has been applied to
a wide range of compressible and incompressible turbulent
flows, see ref. Meyer et al. (2010); Hickel & Adams (2007);
Remmler & Hickel (2012).

The laminar-turbulent transition and first stage of tur-
bulent decay of low to mid Reynolds number Taylor-Green
vortices (TGV) has been used to validate and assess the ca-
pabilities of these models. In ref. Hu et al. (2010) and Hu
(2011) the WENO-CU6-M1 model has been proposed as an
alternative model for implicit LES of compressible flows. In
this work we employ this novel model for the study of low
to very high Reynolds number TGV flows in a weakly com-
pressible setting. We therefore validate its physical consis-
tency at low to mid Reynolds numbers, i.e. Re ≤ 3000 by
quantitative comparison to DNS data of Brachet et al. and
asses the performance for these Re to explicit LES as well
as implicit LES with ALDM. In the second part we explore
the evolution of the TGV at very high Reynolds number un-
til very long times.

2 Model formulation
2.1 Artificial compressibility approach

At Mach numbers M << 1 compressibility is negli-
gible, i.e.: β = 1

ρ
∂ρ
∂ p ≈ 0. The artificial compressibility

approach of Chorin (1997) and Temam (1968) assumes a
nonzero but constant compressiblity for weakly compress-
ible flows. The isentropic compressibility relates to the
sound speed by a2 = 1

ρβ |s . For flows with M = 0.1, as con-
sidered within this work β |s = 0.01. For isothermal pro-
cesses β = β |s and the ratio of specific heats is γ = 1. Pres-
sure and density are thus directly related as p = a2ρ . If a
is a sufficiently large constant, density fluctuations can be
considered as small.

2.2 Numerical-flux computation adapted to
weakly compressible fluid treatment

Within the weakly compressibility approach an
energy equation is redundant. Thus, the govern-
ing equations of motion are given by the conserva-
tion of mass and momentum. In a discrete space-
time-domain, the discrete conservation equation dUi

dt =

− 1
4xi

(
F(u(xi+ 1

2
, t))−F(u(xi− 1

2
, t))

)
for the cell-averaged

solution Ui, where i denotes the cell index, and u = (ρ,ρu)
the 1-D (for simplicity) solution vector requires approxima-
tions for the cell-face fluxes Fi± 1

2
. A straightforward low-

dissipation flux approximation is due to the Roe (1981) ap-
proximate Riemann solver.

Roe’s linearization of the local flux Jacobian Ã j =

Ã(ûL, ûR) is essential. The eigenvalues of Ã j are λ̃ j(ûL, ûR)

and its right eigenvectors K̃( j)(ûL, ûR) are determined so
that the Roe numerical flux function can be computed as:

F̂i+ 1
2
=

1
2
(

f̂L + f̂R
)
− 1

2

m

∑
j=1

α̃ j

∣∣∣λ̃ j

∣∣∣K̃( j) (1)

The Roe averaged density ρ̃ and velocity ũ are obtained
from the left and right reconstructed states ûL and ûR as

ρ̃ =
√

ρLρR, ũ =

√ρLuL +
√ρRuR√ρL +
√ρR

. (2)

Within the weakly compressible approach the Roe-averaged
speed of sound ã= a, hence constant. Thus, the eigenvalues
λ̃ j, the right eigenvectors K̃( j) and the wave speeds α̃ j are:

λ̃1 = ũ−a, λ̃2 = ũ+a,

K̃(1) =

[
1

ũ−a

]
, K̃(2) =

[
1

ũ+a

]
,

α̃1 =
1

2a2 [(pR− pL)− ρ̃a(ûR− ûL)] ,

α̃2 =
1

2a2 [(pR− pL)+ ρ̃a(ûR− ûL)] .

(3)

A three-step TVD Runge-Kutta scheme is used for time in-
tegration, see Shu (2003).

2.3 Reconstruction of non-averaged states
The smooth densities ρ̂L = ρ̂R are reconstructed with

a 6th order central scheme. The non-averaged velocities
(û, v̂, ŵ)L,R are reconstructed with the 6th order adaptive
central-upwind weighted essentially non-oscillatory scale-
separation scheme WENO-CU6-M1 originally proposed for
the implicit LES of compressible flows, ref. Hu (2011).
For the physically consistent simulation of incompressible
isotropic turbulent flows, the modified weights of WENO-
CU6-M1 have been adapted to a linear-weight bias Cq =
16000 and a power exponent of q = 8.

3 Underresolved numerical simulations of
the incompressible three-dimensional
Taylor-Green vortex at finite Reynolds
numbers
Simulations of the three-dimensional Taylor-Green

vortex (TGV) G. I. Taylor (1937) evolving from the initial
two-dimensional condition

u(x,y,z,0) = sin(x)cos(y)cos(z),

v(x,y,z,0) =−cos(x)sin(y)cos(z),

w(x,y,z,0) = 0, ρ(x,y,z,0) = 1.0,

p(x,y,z,0) = 100+
1
16

[(cos(2x)+ cos(2y))

(2+ cos(2z))−2].

(4)

are conducted within a domain of periodic boundary condi-
tions of (2π)3, discretized with a coarse grid of 643 cells.
To assess resolution effects a refined grid of 1283 cells is
used for Re ≥ 800. The DNS data of Brachet et al. for
Re ≤ 3000 serves as validation data, M.E. Brachet (1984);
Brachet et al. (1992). The time evolution of the total dissi-
pation rate ε = dE

dt within 0< t < 10 is used for comparison.
Figure 1 depicts the dissipation rates for LES with a

conventional (Cs = 0.18) and dynamic Smagorinsky model
as well as for WENO-CU6-M1-based ILES. The Smagorin-
sky model with constant Cs overpredicts dissipation even
for the smallest Re = 100. For larger Reynolds numbers the
predictions are unphysical. The dynamic adjustment of the
Smagorinsky parameter improves the dissipation rate pre-
dictions significantly. For Re ≤ 200 the agreement with
DNS is good. For Re ≥ 400, the dynamic Smagorinsky
model, however, overestimates dissipation rates at early
stages, leading to divergence of the solution within time.

With advancing laminar-turbulent transition, the dis-
sipation rate increases due to non-linear vortex stretching.
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The decrease in ε(t) at later stages is due to viscous damp-
ing. For Reynolds numbers below Re = 800, the dissipa-
tion rates obtained with the underresolved WENO-CU6-M1
ILES on the coarse grid are in good agreement with DNS.
For Re≥ 800 equally good agreement is observed with DNS
on the fine grid.

Comparative results are obtained with the adaptive lo-
cal deconvolution model (ALDM) Hickel et al. (2006) for
Re≤ 1600. At higher Reynolds numbers ALDM, however,
overpredicts small scale structures and thus the dissipation
rate, whereas the WENO-CU6-M1 scheme underpredicts
these, see figure 1e. An almost matching dissipation rate
is observed at Re = 3000 for the ALDM implicit LES, the
WENO-CU6-M1 ILES on the fine grid and the the DNS.

4 Evolution of the incompressible three-
dimensional Taylor-Green vortex at very
high Reynolds number over long times
On basis of the validation simulations of finite Re TGV

evolution to a quasi-isotropic state at t ≈ 9, see ref. D. Fau-
connier (2009), the evolution of the incompressible TGV at
physical infinite Reynolds number is studied in detail for an
extended time.

The resolved energy spectrum for 0≤ t ≤ 10 is shown
in figure 2a. It evolves from a single characteristic Fourier
mode of E(k = 1) = 0.125 to the entire range of resolvable
scales (k ∈ [1,32]), whereas at t ≈ 3.4 subgrid-scales are
produced and kinetic energy is decayed due to SGS dissipa-
tion. For times 9≤ t ≤ 11 E ∝ t−1.3 is identified, see figure
2b.

For 11 ≤ t ≤ 30 E(t) compares to t−1.6 and for times
later than t ≈ 30, E(t) scales according to t−2.6, see figure 3.
At t ≈ 100, the self-preserving turbulent decay mechanism
is stalling. For these late stages, E(t) ∝ t−2 is identified.

Following the spectral energy decomposition until t =
200, the loss of energy is well observable, see figure 4.
However, E(k) compares to k−5/3 (dashed lines) at least un-
til t ≈ 70. For t ≥ 100 the bandwidth of the inertial subrange
narrows progressively. At t = 200 only the band within
k = 2 and k = 9 shows Kolmogorov scaling. Higher modes
scale according to E(k) ∝ k−7/3

For the temporal evolution of 3-D isotropic turbulent
decay we identify two scaling ranges:

1. E1(k, t) ∝ k−5/31.6(−t/10) for 10≤ t ≤ 80.
2. E2(k, t) ∝ k−5/31.3−(t−60)/20 is observed for later

times (t ≥ 80).

Low-mode transition to isotropy
For 10≤ t ≤ 30 redistribution of kinetic energy among

the large scale structures is a characteristic indicator of
high-Re TGV transition to isotropy, see Fig. 5. We have
been able to capture the low-mode transition of the Re = ∞
and Re = 3000 TGV with our weakly compressible ILES
solver on grids of 643 and 1283 (not shown) cells.

During the redistribution of kinetic energy inertial sub-
range scaling is lost temporarily, compare E − k-plot for
t = 20. The second mode has temporal minima of the ki-
netic energy at t ≈ 10 and t ≈ 18. At the initiation of this
low-mode transition which coincides with the first temporal
minima, an overall inter-modal kinetic energy redistribution
starts, equalizing the 3-D energy spectrum. Subsequent to
the low-mode transition, kinetic energy is well-distributed

within the entire wavenumber spectrum and the E− k- dis-
tribution resembles an isotropic Kolmogorov-spectra hence-
forth.

5 Discussion and Conclusion
In an underresolved setting the weakly compressible

WENO-CU6-M1 based ILES perform superiour to mathe-
matically more complex explicit LES for a wide range of
Reynolds numbers. At higher Reynolds numbers the nu-
merical viscosity is overpredicted by the explicit SGS mod-
els to an extent that eventually the introduced numerical
viscosity determines the evolution of the flow entirely. At
equal resolution the numerically complex ALDM is com-
putationally more expensive than WENO-CU6-M1 implicit
LES. Increasing one level of refinement enables to predict
dissipation rates comparative to DNS at uncompetetively
low costs. Even for the highest finite Reynolds numbers
for which DNS data is available, physically consistent TGV
evolution is accurately predicted.

The SGS model is inherent in the high-order formu-
lation of the underlying flux computation scheme. With
the WENO-CU6-M1 model it can and has been shaped
such that the SGS smoothly attach to the resolved scales
and thereby emulates the SGS dissipation physically con-
sistently. The resolved scales serve as the model input. Cer-
tainty in the model output, the subgrid scales, is ensured
when most certain input is provided. Thus, a spatially high-
order numerical reconstruction of the unaveraged cell face
solutions is required.

The assumed final quasi-istoropic state reached at t ≈ 9
has been found to be temporary at least for high and infinite
Reynolds number Taylor-Green vortices. Our weakly com-
pressible WENO-CU6-M1-based ILES approach allows for
self-similar isotropic turbulence to develop properly from
laminar-turbulent transition. Two temporal minima within
the second mode indicate the onset and seizure of a tran-
sitional period approximately. Inertial subrange scaling(

E(k) ∝ k−5/3
)

is lost temporarily due to redistribution of
kinetic energy within the low modes. Analogous transition
is observable in the time evolution of the 3-D energy spectra
for a Reynolds number of 3000 depicted in ref. Fauconnier
et al. (2013). The author left this observation undiscussed.

For isotropic turbulence at very high Reynolds num-
bers the total kinetic energy scales with t−1.2, see ref.
Marcel Lesieur (2000). Within the quasi-isotropic period
9≤ t ≤ 11 as well as the isotropic period 30. t . 100 E(t)
has been found to be slightly faster.

Concluding, the proposed conserverative weakly com-
pressible WENO-CU6-M1 Roe-Pike method has allowed
to explore the very-underresolved incompressible Taylor-
Green vortex up to physically infinite Reynolds numbers
until the final stage of turbulent decay physically consis-
tently.
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(a) Re = 100 (b) Re = 200 (c) Re = 400

(d) Re = 800 (e) Re = 1600 (f) Re = 3000

Figure 1: Re specific dissipation rate ε(t) for the 3-D TGV. With 643 cells: WENO-CU6-M1 implicit
LES, constant-Cs Smagorinsky LES, dynamic Smagorinsky LES. On 1283 FV for Re ≥
800: WENO-CU6-M1 ILES. Implicit LES with ALDM Hickel et al. (2006) on 643 cells: ◦. DNS
data by Brachet et al. : � :Re = 100, N : Re = 200, H : Re = 400, � : Re = 800, I : Re = 1600, � : Re = 3000.

(a) (b)

Figure 2: Evolution of the kinetic energy for the early stages (t ≤ 10) of the inviscid, incompressible Taylor-Green
vortex. (a): spectral decomposition of kinetic energy, (b): total kinetic energy.
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Figure 3: Time evolution of the kinetic energy of the 3-D Taylor-Green vortex (E− t) for t ≤ 200 as compared to
idealized scaling of t−1.3 for 9≤ t ≤ 11, t−1.6 for 11≤ t ≤ 30 , t−2.6 for 30≤ t ≤ 100, t−2.0 for t ≥ 100

(a) (b)

Figure 4: 3-D energy spectrum within resolved inertial subrange compared to Kolmogorov scaling E(k) ∝ k−5/3.
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(b) Re = 3000

Figure 5: Spectral decomposition of energy (logarithmic scale) for the 3-D TGV ILES within 5≤ t ≤ 35. Projected
contours on t− k-plane are in increments of 100.5 for 10−6 to 10−2.
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