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ABSTRACT
The time evolution of the pressure spectrum Ep in

freely decaying homogeneous isotropic turbulence (HIT)
is investigated via Eddy-Damped Quasi-Normal Markovian
(EDQNM) computations. It is well known that physical
quantities associated to the energy spectrum evolve through
power laws in HIT decay. For both low and high val-
ues of Reλ , the associated power law exponents of these
laws are known to depend on the initial conditions, such
as the slope of the energy spectrum at the large scales
σ , with E(k → 0,0) ∝ kσ . Batchelor (1951) and Lesieur
et al. (1999) proposed theoretical frameworks to evaluate
the power law exponents associated to the pressure decay
statistics. These formulae, which relate pressure and energy
decay, have been recovered by the use of several underlying
hypothesis, such as Reλ → +∞ and the Joint Gaussian As-
sumption (JGA). Such hypothesis are not completely sat-
isfied in experiments and numerical simulations, the de-
parture from the theoretical background being caused by
a number of effects such as saturation, intermittency and
finite Reynolds numbers (FRN). As a consequence, theo-
retical predictions are rarely completely matched by exper-
imental/numerical results.

In the present work, FRN effects over the prediction
of the pressure spectrum are quantified in order to recover
information about pressure fluctuations in HIT decay. The
first issue investigated is the presence of a plateau in the
Kolmogorov (1941) compensated pressure spectrum. This
plateau, which has been observed at very high Reλ (Reλ =
O(104) in practise), disappears approaching moderate Reλ .
More specifically, the appearance of a −5/3 region instead
of the classical −7/3 Kolmogorov scaling in the pressure
spectrum at very small scales is observed. This result justi-
fies the lack of agreement of the Kolmogorov −7/3 scaling
with several DNS reported in literature, which were per-
formed at moderate Reλ .

The ratio between the pressure and velocity Taylor mi-
croscales λp/λ is also analysed, the results being in very
good agreement with the predictions by Batchelor (1951)
and with the experiments available in open literature. Both

large and small Reλ behaviours are analysed, and the rele-
vance of the FRN effects is quantified.

INTRODUCTION
One of the most classical test cases investigated in the

field of Fluid Mechanics is the free decay of Homogeneous
Isotropic Turbulence (HIT), because of its relevance in un-
derstanding the physical behaviour of turbulent flows and its
implications in turbulence modelling. In HIT, the physical
quantities associated to the energy spectrum, such as the tur-
bulent kinetic energy u2, the integral length scale l and the
energy dissipation rate ε , evolve in time by power laws. Af-
ter the seminal works by Taylor (1935), several comprehen-
sive reviews have been published (e.g. Batchelor (1953);
Hinze (1975); Davidson (2004); Sagaut & Cambon (2008)).
Nevertheless, some basic aspects, such as the quantification
of the power law exponent related to the decay of u2, have
not been fully understood at the present time.

In HIT, the initial conditions play an important role
in the emergence and evolution of different stable decay
regimes. The two classical cases investigated in the liter-
ature are referred to as Saffman Turbulence (E(k→ 0,0) ∝
k2) and Batchelor turbulence (E(k→ 0,0) ∝ k4). Comte-
Bellot & Corrsin (1966) (CBC) proposed analytical for-
mulae to recover the power law exponents as a function
σ , which is the slope of the energy spectrum at the large
scales. These formulae, which are reported in Table 1,
are in very good agreement with numerical simulation re-
sults, when corrected by a coefficient α taking into ac-
count the breakdown of Permanence of Large Eddies (i.e.
E(k, t) = E(k, t0), k� kl) due to non local energy transfers
(Eyink & Thomson (2000); Lesieur (2008)). For integer
values of σ , α = 0 for σ = 1,2,3 and α ≈ 0.52 for σ = 4.
These formulae have been extended to non-integer values of
σ by Meldi & Sagaut (2012): α = max[0,0.65(σ − 3.2)].
They are in excellent agreement with numerical results in
open literature (Lesieur (2008); Meldi et al. (2011)). Con-
versely, the comparison of numerical results and theoretical
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predictions with experiments is a difficult task. In fact, it is
not possible to impose a chosen shape of the energy spec-
trum at very large scales in grid experiments. Moreover, the
large-scale spectrum shape is not directly measured, but it
is recovered through the application of theoretical formulae
to the sampled data, which are usually taken in the iner-
tial/dissipative region.

The attention of the scientific community on HIT de-
cay has been mostly focused on the energy transfer and
on the decay law of the velocity-based statistical quanti-
ties. Conversely, a limited number of papers in open lit-
erature are devoted to the analysis of the pressure spectrum
and the related statistics. In some early works, Heisenberg
(1948) investigated the pressure gradient variance (∇p)2

and Batchelor (1951) proposed a seminal work based on the
Joint Gaussian Assumption (JCA) of the velocity field. In
his work, Batchelor highlighted the correlation between the
pressure and velocity field. Casting aside the JGA hypoth-
esis, Hill & Wilczak (1995) derived a theory relating the
pressure structure function to fourth-order velocity structure
functions. The statistics related to the energy spectrum be-
ing extremely sensitive to its shape at large energetic scales,
i.e. near the spectrum peak, we can assume that the pressure
statistics should exhibit a significant sensitivity to the shape
of the energy spectrum.

A number of papers studying pressure statistics
through experiments (Uberoi & Corrsin (1953); Pearson &
Antonia (2001); Tsuji & Ishihara (2003)) and direct nu-
merical simulation (Schumann & Patterson (1978); Pumir
(1994); Gotoh & Fukayama (2001); Yeung et al. (2012);
Donzis et al. (2012)) has been published and general con-
sensus about the nature of the correlation between pressure
and velocity fields has been reached. Nevertheless, several
open issues are still debated at the present time, one of them
being the scaling of the pressure spectrum in the inertial
region. Kolmogorov (1941) derived through dimensional
analysis the theoretical values of the slope of the energy
and pressure spectra in the inertial range for Reλ → +∞,
which are −5/3 and −7/3, respectively. While there is a
strong experimental and numerical evidence of the accu-
racy of Kolmogorov scaling for the energy spectrum, the re-
sults observed in several DNS (see Gotoh & Rogallo (1999);
Cao et al. (1999); Vedula & Yeung (1999)) cast doubts
about the Kolmogorov scaling for the pressure spectrum.
Indeed, the numerical results show that the slope of the pres-
sure spectrum in the inertial region is included in the range
[−7/3,−5/3].

The deviation of the experimental/numerical results
from theory are usually attributed to the fact that a realistic
physical configuration is investigated. Effects such as inter-
mittency and Finite Reynolds Number (FRN), which are not
accounted for in the traditional theoretical approaches, are
assumed to be responsible for the discrepancies observed.
While these effects are usually advocated to justify the va-
lidity of the recovered results, a few analysis reported in
the open literature are devoted to the their assessment and
quantification.

Pressure fluctuations have a strong impact on several
physical phenomena such as turbulent sound generation,
particle dispersion and droplet growth. Several domains of
research can gain advantage of a better understanding of the
statistics related to the pressure spectrum. The results re-
ported in literature at the present time appear fragmentary,
the experiments being affected by not reducible epistemic
uncertainties and the DNS results being limited to moderate

Reλ and unsatisfactory resolution at very large scales.
In the present paper, the FRN effects over pressure

fluctuations are investigated by the use of an Eddy-Damped
Quasi-Normal Markovian (EDQNM) model. This model,
which does not account for intermittency effects, allows for
a clear analysis of the FRN effects on the pressure spectrum
and its statistical quantities.

The paper is divided as follows. In Section II, details
about the numerical implementation of the EDQNM model
and the set-up of the test case are given. In Section III, the
characteristics of the pressure spectrum Ep are investigated.
In particular, FRN effects over the slope of Ep in the inertial
range are quantified, the results being compared with exper-
imental and numerical results in the literature. In Section
IV, the well known relation between the Taylor microscale
λ and its counterpart for the pressure spectrum λp is anal-
ysed. Two asymptotic limits, in agreement with the seminal
work by Batchelor (1951), are observed. Finally, in Section
V the conclusions are drawn.

nu2 nε n
(∇p)2

High Reλ −2 σ−p+1
σ−p+3 − 3(σ−p)+5

σ−p+3 − 9(σ−p)+15
2(σ−p+3)

Low Reλ −σ+1
2 −σ+3

2 − (σ+2)
1

Table 1. Analytical formulae for the prediction of the
power-law exponents of the decay of the main HIT statis-
tical quantities. The high Reλ formulae are proposed by
Comte-Bellot & Corrsin (1966) and revisited by Meldi &
Sagaut (2012), while the low Reλ formulae are elaborated
by Clark & Zemach (1998).

EDQNM MODEL & SET UP OF THE SIMULA-
TIONS

The EDQNM model is a quasi-normal closure based on
the discretisation of the Lin equation, which is the spectral
counterpart of the Karman-Howarth equation. The model
accurately describes the triadic energy transfer in wave
number space and can be used to evaluate several statistics
in turbulence, up to three-point fourth-order correlations. It
has proved to be a reliable, robust and efficient method to
investigate HIT free decay (e.g. Meldi et al. (2011); Tcho-
ufag et al. (2012)). The reader is addressed to the works
of Orszag (1970), Lesieur (2008) and Sagaut & Cambon
(2008) for an exhaustive discussion.

A database of computations has been generated, im-
posing as initial energy spectrum a simplified version the
energy spectrum formulated by Pope (2000):

E(k) =

{
Akσ kl� 1
Ck ε2/3k−5/3 fl(kl) kl� 1

(1)

with

fl(kl) =
(

kl
[(kl)c1 + c2]1/c1

)5/3+σ
(2)
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The free parameter c1 in Equation 2 is set to 1.5, while
the parameter c2 is computed in order to recover l(0) = 1.
An initial condition Reλ = 106 has as well been imposed.
Defining kl(0) the initial position of the peak of the en-
ergy spectrum, the maximum resolution at the large scales
is k0 = 10−10 kl(0). The minimum resolution is instead set
to kmax = 10/η(0), being η(0) the initial value of the Kol-
mogorov scale. The database consists of four simulations,
corresponding to integer values of the parameter σ = 1,2,3
and 4. Using these simulations, the HIT decay has been de-
scribed in the range 10−4 ≤ Reλ ≤ 105 with an excellent
resolution at the large scales. All the results are referred
to the normalised time scale τ = t/t0, with t0 = u2(0)/ε(0)
being the initial characteristic turnover time.

The EDQNM model has been used to compute the tri-
adic energy transfer and, simultaneously, to compute the
pressure spectrum Ep (Meldi & Sagaut, 2013). Starting
from the relation between the pressure fluctuations and the
fourth-order velocity correlations, the application of the
JGA approximation allows to recover the following form
of the pressure spectrum:

Ep(k) =
k2

4π

∫

r+q=k
E(r)E(q)

sin4 β
r4 dq (3)

where [k, r, q ] is the vectorial base used to compute
the energy triadic interactions in the spectral space, and β is
the angle facing r in the triangle formed by the three vectors.
The mean-square pressure fluctuation p2 and the pressure
gradient (∇p)2 have been respectively recovered as:

p2 =
∫ ∞

0
Ep(k) dk (4)

(∇p)2 =
∫ ∞

0
k2 Ep(k) dk (5)

These quantities have been as well sampled in the range
10−4 ≤ Reλ ≤ 105.

FRN EFFECTS ON THE PRESSURE SPEC-
TRUM AND THE KOLMOGOROV SCALING
LAW

The characteristics of the pressure spectrum Ep(k,τ),
recovered by the EDQNM model, are now analysed. First,
the interest will be restricted to high Reynolds HIT (Reλ ≥
103) and to Saffman and Batchelor turbulence.

The time evolution of the pressure spectrum is shown
in Figure 1 (a) and (b) for the two considered cases.
The presence of an extended range for which Ep(k,τ) =
Ap(τ)k2 is observed in the large scales region for both cases.
This range has been predicted theoretically and observed
numerically by Lesieur et al. (1999) and it exhibits a con-
stant slope coefficient 2. The slope of this range is indepen-
dent of the parameter σ . Conversely, the time evolution of
the coefficient Ap(τ) is driven by the initially imposed en-
ergy spectrum. Dimensional analysis allows to recover the
following expression:

Ap(τ)'
8

15

∫ +∞

0

E2(k,τ)
k2 dk (6)

Equation 6 is in very good agreement with the numerical
results by Lesieur et al. (1999) and Meldi & Sagaut (2013).

The compensated pressure spectrum Es
p =

Ep/(ε4/3 k−7/3) is now investigated, in order to de-
rive clear information about the slope of the pressure
spectrum in the inertial range. Es

p is displayed in Figure
2 (a) for Saffman turbulence. The results of Batchelor
turbulence simulations are here omitted, as the information
deducible is the same observed for Saffman turbulence.
In this case, we consider pressure spectra in the range
100 ≤ Reλ ≤ 105. At very high Reλ , it is possible to
observe a fully developed plateau for more than three
decades. A similar plateau, but much less developed,
has been observed in the DNS results by Pumir (1994).
Moreover, a bump in the compensated pressure spectrum
is observed approaching the dissipation region. This
phenomena, which is classically referred to as bottleneck
effect when dealing with the energy spectrum, has been
as well observed in the pressure spectrum by Gotoh &
Fukayama (2001). The present results indicate that the
slope of this bump is about 1/4 at very high Reynolds
numbers. Decreasing the Reynolds number investigated,
the slope of the bump progressively increases up to 3/10
for Reλ ≈ 600. This behaviour can be observed in Figure
2 (b), were the local slope of the pressure spectra is
reported. If even lower Reλ are considered, the plateau of
the compensated spectra progressively disappears and the
bump region degenerates into a small secondary plateau.
Moreover, the slope becomes progressively steeper at lower
Reλ numbers, with an asymptotic value of −5/3.

A global picture can be drawn by the analysis of the
EDQNM results. At very large Reλ , the pressure spec-
trum complies with the −7/3 Kolmogorov scaling. More-
over, a bottleneck near the Kolmogorov scale can be ob-
served. At very small Reλ , the Kolmogorov inertial range is
no longer present, but the bottleneck near the Kolmogorov
scale evolves into a small (less than one-decade long)−5/3
range. This behaviour, which can be clearly appreciated in
Figure 2 (b) for moderate Reynolds numbers, is indepen-
dent of the shape of the energy spectrum E. The present
results support the discussion by Tsuji & Ishihara (2003),
who argued that the lack of agreement between most of the
DNS results reported in literature and the Kolmogorov scal-
ing law is due to the FRN effects. More specifically, Reλ
presently investigated in DNS are not sufficient for a fully
developed plateau of the compensated spectrum to be ob-
served. While Tsuji & Ishihara (2003) indicate a minimum
limit of Reλ = 600 to neglect FRN effects, EDQNM results
suggests that Reλ ≥O(104) is the minimum threshold limit
to observe the Kolmogorov scaling. Indeed, the EDQNM
results proposed are not reachable by present DNS, due to
the prohibitive amount of computational resources needed
to simulate a flow at Reλ = 106.

SENSITIVITY OF THE RELATION BETWEEN
THE ENERGY-BASED AND PRESSURE-
BASED TAYLOR MICROSCALES TO FRN
EFFECTS

During the past decades the relation between the decay
of the Taylor microscale λ 2 = 10νu2/ε and the equivalent

scale for the pressure spectrum λ 2
p = ρ2

(
u2
)2

/(∇p)2 has
been extensively studied (e.g. Batchelor (1951); Vedula &
Yeung (1999); Pearson & Antonia (2001)). Relying on the
JGA hypothesis, Batchelor (1951) derived the following re-
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Figure 1. Evolution of the pressure spectrum Ep(k,τ) in time, in the case of high Reynolds number (Reλ > 103). The cases
investigated are (a) Saffman turbulence and (b) Batchelor turbulence, respectively. Two ranges at Ep ∝ k2 and Ep ∝ k−7/3 are
observed at large scales and in the inertial range.

10
−4

10
−2

10
0

10
−4

10
−3

10
−2

10
−1

k η

E
p
(k
,τ
)/
(ε

4
/
3
k
−
7
/
3
)

 

 

Reλ = 15000

Reλ = 2000

Reλ = 600

Reλ = 220

10
−4

10
−3

10
−2

10
−1

10
0

−1

−0.5

0

0.5

1

k η

S
lo
p
e
of

E
p
(k
,τ
)/
(ε

4
/
3
k
−
7
/
3
)

 

 

Reλ = 15000

Reλ = 2000

Reλ = 600

Reλ = 220

(a) (b)
Figure 2. (a) Compensated pressure spectrum Es

p = Ep/(ε4/3 k−7/3) and (b) local slope of the compensated pressure spectrum
in the case of Saffman turbulence.

lations in the case of high and low Reλ :

{
λp/λ = 0.11Re1/2

λ , Reλ → ∞
λp/λ = 0.81 , Reλ → 0

(7)

These laws can be deduced as well by CBC dimen-
sional analysis, for both high and low Reλ . If λ , λp and
Reλ are described by classical power laws, such as the ones
proposed by Comte-Bellot & Corrsin (1966), and recalling

that Reλ =
√

20
3

u2√
ν ε , Equation 7 can be rewritten as:

τ
0.5(2n

u2 −n
(∇p)2

)
τ−0.5 ∝ τ0.5(n

u2 −0.5(nε )) (8)

for high Reλ and

τ
0.5(2n

u2 −n
(∇p)2

)
τ−0.5 ∝ τ0 (9)

for low Reλ . Substituting the values of nu2 , nε and n
(∇p)2

with the corresponding CBC formulae values reported in
Table 1, it is possible to observe that the left and right term
of Equation 8 and 9 decay with the same power law expo-
nent, for every value of σ ∈ [1, 4]. Moreover, if σ = 1, the
power law exponent is 0 and the ratio between λp and λ is
constant in time both at high and low Reλ .

The coefficient Cp = (λp/λ )/Re1/2
λ characterising the

decay at high Reλ is now investigated. If the CBC de-
cay power laws are exactly recovered in EDQNM simu-
lations, the coefficient Cp will be an invariant in HIT de-
cay and its value will be determined by the parameter σ .
The results are plotted against Reλ in Figure 3 (a) for the
classical decay regimes of Saffman and Batchelor turbu-
lence. The analysis of the results shows that at very high
Reλ the value of Cp is almost constant, in agreement with
Batchelor (1951). Nevertheless, the value recovered by
the EDQNM simulations is smaller. In the range 103 ≤
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Figure 3. (a) Coefficient (λp/λ )/Re1/2

λ in the high Reλ formula by Batchelor (1951) and (b) ratio of the Taylor microscales
λp/λ for 10−4 ≤ Reλ ≤ 105.

Reλ ≤ 105, Cp ∈ [0.103, 0.106] for Saffman turbulence and
Cp ∈ [0.107, 0.111] for Batchelor turbulence. Cp value ap-
pears to increase progressively faster due to the FRN effects
at moderate Reλ , leading the ratio λp/λ to diverge from

the high Reynolds behaviour ≈ 0.11Re1/2
λ and to reach the

low Reynolds asymptotic limit. Moreover, the curves λp/λ
for Saffman and Batchelor turbulence converge toward an
asymptotic value of λp/λ = 0.6 for low Reλ , as it can be
clearly appreciated in Figure 3 (b). This result is in qual-
itative agreement with Batchelor (1951) and in very good
agreement with the experimental results Pearson & Antonia
(2001); Uberoi & Corrsin (1953).

CONCLUSIONS
The effects of finite Reynolds number over the time

evolution of the pressure spectrum and the related statistics
have been investigated by numerical EDQNM simulations
in the range 10−4 ≤ Reλ ≤ 105. In order to quantify the
sensitivity of Ep to the slope of the energy spectrum E at
large scales, the initial conditions have been chosen such
that σ = 1,2,3,4.

The analysis of the sampled pressure spectra confirms
the presence of two ranges. The first range, Ep(k,τ) =
Ap(τ)k2, is observed in the large scales region. The power
law exponent driving the time evolution of the coefficient
Ap(τ) shows a sensitivity to the parameter σ . The second
range, which represents the inertial region of the pressure
spectrum, can be approximated as Ep(k) ∝ ε4/3 k−7/3. This
last range is progressively less clear to observe for decreas-
ing Reλ , as it merges with the pseudo-bottleneck region
close to the Kolmogorov scale. The presence of a short
range exhibiting a−5/3 scaling near the Kolmogorov scale,
which has been reported in several DNS, originates in the
pseudo-bottleneck and is thus due to the FRN effects.

As a last point, the ratio between the Taylor mi-
croscales λp/λ has been investigated. The asymptotic be-
haviours derived by Batchelor (1951) for high and low Reλ
are recovered by the present EDQNM results. For the high
Reλ case, the coefficient Cp = λp/(λ Re1/2

λ )∈ [0.105, 0.11]
and exhibits a mild sensitivity to the parameter σ . More-

over, the comparison with DNS data confirms that finite
Reynolds number effects are significant in the determina-
tion of Cp for Reλ ≤ 104, and that they lead to deviation of
the results from the theoretical JGA behaviour. The ratio
λp/λ converges to a universal value of ≈ 0.6 at very low
Reλ .

An important conclusion that can be drawn by the
present study is that, for Reλ ≤ 104, intermittency is not
the sole physical mechanisms yielding the occurrence of
anomalous exponents, e.g. for λp/λ . Thus, DNS of HIT
decay for Reλ O(105) should be performed in order to re-
cover clear information about pure intermittency effects.
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