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ABSTRACT
The time evolution of initially non-self-similar regimes

in isotropic turbulence decay is investigated by both theoret-
ical analysis and EDQNM simulations. The breakdown of
self-similarity is recovered by the analysis of a three-range
energy spectrum, with two different slopes at scales larger
than the integral length scale.

The results of the analysis indicate that, depending on
the initial conditions, the solution can bifurcates toward a
true self-similar decay regime, or sustain a lasting non-self-
similar state. These non-self-similar regimes can not be de-
tected restricting the observation to the time exponent of
turbulence statistical properties such as the turbulent kinetic
energy or the energy dissipation rate. In fact, it is shown that
the decay of the physical quantities is governed by the large
scales close to the energy spectrum peak only. In particular,
the shape of the energy spectrum near its peak, which may
be related to the turbulence production mechanisms, is of
pivotal importance. As a conclusion, information about the
very large scales of the energy spectrum can not be derived
from the observation of the decay regimes characteristics, as
those scales have a negligible impact over energy transfer.

Another relevant result is that classical self-similarity
theories, which link the asymptotic behaviour the energy
spectrum E(k→ 0) and the turbulence decay exponent, are
not fully relevant when the large scale spectrum shape ex-
hibits more than one range.

INTRODUCTION
In this work, the analysis of self-similar regimes in in-

compressible homogeneous isotropic turbulence (HIT) free
decay is addressed.

This subject has been extensively analysed in open lit-
erature, starting with the seminal studies by Taylor (1935),
which were followed by comprehensive reviews (see Batch-
elor (1953), Hinze (1975), Monin & Yaglom (1975), David-
son (2004), Lesieur (2008) and Sagaut & Cambon (2008)).

A number of aspects related to HIT decay, though, is not
fully understood at the present time. Among these, the ob-
servation of self-similarity is one of the most debated is-
sues. Self-similar solutions in HIT are classically defined as
regimes that can be described by the use of a single length
scale l(t) and a single velocity scale u(t). This assumption
implies that the three-dimensional energy spectrum must
comply with the relation E(k, t) = u2(t)l(t)F(kl(t)), where
F and k denote a dimensionless shape function and the
wavenumber, respectively.

Theoretical analyses (Comte-Bellot & Corrsin, 1966;
Lesieur & Schertzer, 1978; George, 1992; Speziale &
Bernard, 1992), have shown that the evolution laws of HIT
statistical quantities, such as the turbulent kinetic energy
u2(t), the dissipation rate ε(t) and the integral scale l(t) fol-
low a power-law behaviour. In particular, a relation between
the decay exponent and the energy distribution at very large
scales is observed, i.e the decay exponent nu2 can be ex-
pressed as a function of the slope of the energy spectrum at
very small wave numbers, σ .

The two classical values studied in the literature are
σ = 2 and σ = 4, such that E(k → 0) ∝ k2 and E(k →
0) ∝ k4. The former is related to conservation of linear
momentum and, as a consequence, the Birkhoff-Saffman
invariant L =

∫ 〈u(x) · u(x+ r)〉dr ∝ u2(t)l3(t) (Saffman,
1967). This regime and is usually referred to as Saffman
turbulence. The second is associated with the conserva-
tion of angular momentum and the Loitsyansky integral
I =

∫
r2〈u(x) · u(x+ r)〉dr ∝ u2(t)l5(t), and is referred to

as Batchelor turbulence.

While these two regimes have been extensively anal-
ysed in the literature, the question arises for the physical
relevance of other values for σ . This issue derives from
the fact that, assuming the regularity of E(k) at k = 0,
the following Taylor series expansion holds E(k → 0) =

L
4π2 k2 + I

24π2 k4 + .... Physical and mathematical arguments
indicate 1 ≤ σ ≤ 4, but there is no proof at present time
on the occurrence of turbulent solutions with arbitrary real
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values of σ within the range [1,4].
The existence of self-similar solution in HIT is indi-

cated by Lie-group symmetry analysis (Clark & Zemach
(1998); Oberlack (2002)) and observed in experimental re-
sults, Direct Numerical Simulations and spectral closure
based solutions (e.g. EDQNM results in Lesieur (2008);
Sagaut & Cambon (2008)). At the same time, no theoreti-
cal argument precludes the existence of other decay regimes
which include more independent length scales. Skrbek &
Stalp (2000) introduced a cutoff length scale to account for
saturation effects due to the finite size of physical domain,
while three-range composite energy spectra have been in-
troduced in the works by Frenkel & Levich (1983); Frenkel
(1984); Eyink & Thomson (2000); Llor (2011).

A complete theoretical analysis of such three-range so-
lutions is presented in this work, including a possible break-
down of the Permanence of Large Eddies. The theoreti-
cal predictions are then compared to numerical results. An
Eddy-Damped Quasi-Normal Markovian (EDQNM) model
is selected to obtain an accurate investigation of very-high
Reynolds number cases with excellent spectral accuracy, for
very long evolution times.

The paper is structured as follows. In Section II, the
theoretical framework based on a composite three-range en-
ergy spectrum is developed and commented. In Section III,
the EDQNM model is briefly introduced and the set up of
the numerical simulations is described. In Section IV, infor-
mation about the emergence of pseudo-self-similar regimes
and lasting non-self-similar regimes is recovered comparing
theoretical and numerical results. In Section V, the conclu-
sions are drawn.

THEORETICAL ANALYSIS FOR COMPOSITE
THREE-RANGE SPECTRUM

In this Section, the evolution of an initially non-self-
similar regime is investigated by the development a theo-
retical model, starting from a composite three-range energy
spectrum. This analysis allows to investigate the sensitiv-
ity of the decay regime to the characteristics of the energy
spectrum at the large scales. The composite energy spec-
trum, which has been addressed in the works by Frenkel &
Levich (1983); Frenkel (1984); Llor (2011) is defined by
the existence of two ranges at large scales. Thus, the energy
spectrum is described by three regions, each of them be-
ing defined by a different analytical expression. More pre-
cisely, the energy spectrum is given by E(k) = Akσ1 in the
very large scale region 0≤ k ≤ k1. The large scales region,
which is observed in the range k1 ≤ k ≤ k2, is instead char-
acterised by a parameter σ2 so that E(k) = Akσ2 . At last,
the composite spectrum exhibits an inertial region k ≥ k2,
in which the inertial range by Kolmogorov (1941) is ob-
served. The two wavenumbers k1 and k2, which delimit the
transition from one region to another, are linked to two in-
dependent length scales. These scales will be referred to as
l1 = 1/k1 and l2 = 1/k2, respectively. The latter is actually
the integral length scale (l in the classical two-range cases
discussed in Comte-Bellot & Corrsin (1966)) of the flow,
which is associated to the peak of the energy spectrum.

The full analytical functional form is:

E(k) =





Akσ1 kl1� 1
Bkσ2 kl1� 1, kl2� 1
Ckε2/3k−5/3 kl2� 1

(1)

which is completed by the relations

Al−σ1
1 = Bl−σ2

1 or Akσ1
1 = Bkσ2

1 (2)

Bl−σ2
2 =Ckε2/3l5/3

2 or Bkσ2
2 =Ckε2/3k−5/3

2 (3)

Equations 2 and 3 grant the continuity of the en-
ergy spectrum at the k1 = 1/l1 and k2 = 1/l2. Meldi &
Sagaut (2012) showed that the coefficients A and B can be
represented as A(t) ∝ lp1

1 (t), B(t) ∝ lp2
2 (t), where pi =

max[0, 0.65(σi−3.2)].
Let us now considered the well-known relations:

∂u2

∂ t
∝−ε, u2(t) =

1
2

∫ +∞

0
E(k, t)dk (4)

Integrating the energy spectrum illustrated in Equation
1, we recover:

u2 =
1
2

[
A

σ1 +1
kσ1+1

]1/l1

0
+

1
2

[
B

σ2 +1
kσ2+1

]1/l2

1/l1
+

1
2

[−3Ck

2
ε2/3 k−2/3

]+∞

1/l2
(5)

Manipulating Equation 5 and using the two continuity
Equations 2 - 3, the resulting equation is:

u2
e =

(
3σ2 +5

4(σ2 +1)
C

3+3σ2
5+3σ2
k B

2
5+3σ2

)
ε

2(σ2+1)
5+3σ2 (6)

where the decaying energy u2
e is:

u2
e = u2− σ2−σ1

2(σ1 +1)(σ2 +1)
B2/3

(
A
B

) σ2+1
σ2−σ1

(7)

This new quantity is the energy that the system would
have in the case of a CBC starting energy spectrum with
σ1 = σ2. The analysis of Equation 6 shows that the decay
law depends on σ2 only. Conversely, the parameter σ1 ap-
pears in the definition of u2

e . Combining Equation 4 and
Equation 6, the decay law recovered is:

u2
e(t) = E (t− t1)

− 2(σ2+1)
σ2+3 (8)

This formula has been as well recovered by Comte-Bellot &
Corrsin (1966) starting from a two-range energy spectrum.
Even if the spectrum exhibits two independent length scales
at low wave number, the resulting decay regime is similar
to a classical self-similar solution. Therefore, such a state
will be referred to as a pseudo-self-similar state.

A striking observation is that the power law coefficient
in Equation 8 is governed by σ2 only, which is related to the
shape of the energy spectrum at the energetic scales close to
the peak. Conversely σ1, which is tied to the characteristics
of E at the very largest scales, simply modifies the defini-
tion of u2

e . These considerations are in agreement with the
numerical result observed by Meldi et al. (2011), which re-
covered a sensitivity of the power law coefficients nQ when
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Figure 1. Scheme of the time evolution of the composite three-range energy spectrum (a) before the critical time tc and (b)
after the critical time tc.

considering uncertainties in the shape of the energy spec-
trum in correspondence of its peak.

Equation 8 is valid for the early stages of the HIT de-
cay, for which the relation l1 � l2 holds. As a matter of
fact, the two length scales l1 and l2 evolve in time with dif-
ferent power laws and they can possibly become identical
at a critical time tc. A two-range energy spectrum will be
finally observed for t > tc if the scale l2 grows faster than
l1, as exemplified in Figure 1. Known the values of σ1 and
σ2, the use of the CBC formulae along with the continuity
Equations 2 and 3 allows to recover a theoretical estimation
of the power-law exponents related to l1 and l2. In order to
have a finite critical time tc, the following condition must
hold:

2p2

(σ2−σ1 + p1)(σ2− p2 +3)
<

2
(σ2− p2 +3)

(9)

Through some algebraic manipulation, it is possible to
derive as well an estimation of tc by the formula:

tc = (l2(0)/l1(0))
αc , αc =

1
2
(σ2−σ1 + p1)(σ2− p2 +3)

(σ1− p1)− (σ2− p2)
(10)

The power-law exponent for the pseudo-self-similar
regimes with finite tc are summarised in Table 1 , for three
different statistical properties of interest. The transition be-
tween the two states will be smooth, since when l1 and l2 are
close enough scales belonging to both ranges are involved in
the energy cascade process. Conversely, if Equation 9 does
not hold, the critical time will diverge to infinity, leading to
a permanent non-self-similar regime.

EDQNM MODEL & SET UP OF THE SIMULA-
TIONS

The theoretical work developed in Section II will be
compared with numerical results recovered by the use of
the EDQNM model. A brief description of this model is
given in this Section, the reader being referred to Orszag
(1970), Lesieur (2008) and Sagaut & Cambon (2008) for an
exhaustive discussion.

The EDQNM model is a quasi-normal closure based
on the numerical discretisation in the spectral space of the

nu2 nl nε

t < tc 2 σ2−p2+1
σ2−p2+3

2
σ2−p2+3

3(σ2−p2)+5
σ2−p2+3

t > tc 2 σ1−p1+1
σ1−p1+3

2
σ1−p1+3

3(σ1−p1)+5
σ1−p1+3

Table 1. Theoretical formulae derived from the analysis of
the three-range energy spectrum, in the case of a finite value
of the critical time tc.

Lin equation:

∂E(k, t)
∂ t

+2ν k2E(k, t) = T (k, t) (11)

where T (k, t) is the non linear energy transfer. The model
is derived assuming that the statistical moments of veloc-
ity field can be correctly evaluated closing the correspond-
ing dynamic equations in wave-number space. The closure
takes into account the effects of fourth-order and higher mo-
ments by the use of a linear eddy-damping term on non-
linear energy transfer. This model is able to accurately pre-
dict triadic energy transfer in HIT decay and it has been suc-
cessfully used to investigate both the statistical properties
of the energy spectrum (Meldi & Sagaut, 2012; Tchoufag
et al., 2012) and the fluctuations in the pressure spectrum
(Meldi & Sagaut, 2013).

The numerical implementation of the EDQNM model
is based on a logarithmic discretisation in wavenumber
space and the three-points velocity correlations are com-
puted on the elements of the triads [k, p, q]. This wavenum-
ber discretisation becomes progressively less efficient when
non-local very elongated triads k� p ∼ q are considered.
This drawback can have a non-negligible impact on the ac-
curacy of the model, in particular if the two-points velocity
correlation decays fast. Therefore, the original model pro-
posed by Orszag (1970) is extended by the addition of a
non-local transfer term, which exactly determines the non-
local triadic interactions (Lesieur, 2008).
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The extended model, which has been assessed for both
Saffman and Batchelor turbulence by the comparison with
the original model and theoretical results, exhibits signifi-
cant improvement in the prediction of the slope of the en-
ergy spectrum.

A database of EDQNM simulations is created for a
number of combinations of the parameters [σ1, σ2], im-
posing a composite three-range initial energy spectrum at
Reλ (0) = 105. The initial energy spectrum is a simplified
version of the functional form proposed by Pope (2000):

E(k) =

{
Akσ1 kl1� 1
Ck ε2/3k−5/3 fl(kl2) kl1� 1

(12)

with

fl(kl2) =
(

kl2
[(kl2)α +β ]1/α

)5/3+σ2

(13)

This functional form has been chosen in order to con-
nect smoothly the large scales range with the Kolmogorov
inertial range. The smoothness of this transition is governed
by the parameter α , which is set to α = 1.5. The parame-
ter β is chosen to recover the initial condition l2(0) = 1
for all the cases investigated. The results are referred to
the normalised time scale τ = t/t0, t0 = u2(0)/ε(0). The
length scales l1 and l2 are initially separated by 3 decades,
i.e. l1(0) = 103 l2(0). The large scales maximum resolution
l0 is chosen so that l0 = 106 l1(0). On the other hand, the
minimum resolution is set to lN = 0.1η(0), where η is the
Kolmogorov scale. This very high resolution implies that
about 17 decades in the spectral space have been consid-
ered for three-range spectrum cases. This space has been
discretised in 290 modes.

In order to preclude possible corruption of the results
by spurious saturation/confinement and low-Reynolds num-
ber effects, it was checked that at final time t f the inte-
gral scale complies with the relation l(t f )< 300 l0 and that
Reλ ≥ 170, for all the simulations performed.

EDQNM RESULTS FOR FINITE AND INFINITE
CRITICAL TIME

In this Section, EDQNM results starting from a com-
posite three-range spectra are discussed and compared with
the theoretical model derived in Section II. We first consider
[σ1, σ2] values which lead to a finite tc. More specifically,
the case σ1 = 3 and σ2 = 2 is selected. Using Equation 10,
we can expect that the transition between the two regimes
will occur at a critical time tc = 107.5t0.

The numerical results recovered show an agreement
with the theoretical background proposed. To exemplify
that, the time evolution of the energy spectrum is reported
in Figure 2 (a). It is possible to observe that the length scale
l1 does not vary in time as the turbulent flow decays and the
three-range-shape of E is conserved until the magnitudes of
the two length scales l2 and l1 are of the same order.

This case corresponds to the transition from a pseudo-
self-similar regime (t < tc) to a self-similar regime (t > tc).

The agreement with the theoretical analysis is observed
as well if the power law exponents of the main HIT sta-
tistical quantities are considered, as shown in Figure 2 (b)

for u2. The transition between the two regimes is mainly
smooth, even if a kink is locally observed before the regime
governed by σ1 is fully established. Moreover, it is possible
to observe that the estimation of tc by the analytical Equa-
tion 10, which is represented as a vertical dash-dot line, is
in very good agreement with the EDQNM results.

An interesting result is that during the first evolution
time, the spectrum is defined by two independent length
scales, and therefore the solution is not self-similar. This
can be clearly observed in Figure 3, where the scaling law
proposed by Clark & Zemach (1998) is applied to the com-
posite three-range spectra and to a classical case of Saffman
turbulence. Nevertheless, the decay of the statistical proper-
ties is identical to a self-similar regime for a classical two-
range spectrum with slope σ2 at very large scales. There-
fore, the decay regime is governed by the large scales lo-
cated near the energy spectrum peak and the features of
E(k) for k ' 1/l2, and not by asymptotically large scales
k→ 0.

The case of an infinite critical time tc is now addressed.
This case corresponds to a permanent non-self-similar be-
haviour, as two different length scales exist at all times. To
observe this regime, we enforce as initial condition σ1 = 4
and σ2 = 3.7.

The energy spectrum evolution, which is shown in Fig-
ure 4 (a), indicates that the slope of the energy spectrum
changes in time. Moreover, the energy spectrum between l1
and l2 gradually assumes an intermediate slope between the
two enforced initial values. This means that the regime will
not asymptotically converge to the theoretical self-similar
regime associated to σ1. A confirmation is given by the
observation of the predicted power-law coefficient for u2,
which is reported in Figure 4 (b). In fact, nu2 is close to
the theoretical value associated to the regime σ2 = 3.7 after
the transient has faded. The predicted power law coefficient
then evolves in time, reaching a value which is included in
the range of the regimes associated to σ2 = 3.7 and σ1 = 4.
In this case the turbulent decay, even if not self similar, can
be roughly approximated as being self similar, and governed
by a parameter σ∞ which is estimated to be in the range
σ2 < σ∞ < σ1.

CONCLUSIONS
The initial conditions leading to the breakdown of self-

similarity in HIT decay at high Reλ number have been in-
vestigated by the use of a simplified theoretical model and
EDQNM simulations. For both the approaches, and ini-
tial composite three-range energy spectrum has been con-
sidered.

The results indicate that if the two initial parameters
σ1 and σ2 are chosen so that the critical time tc is finite,
two different regimes are observed in HIT long time de-
cay. Two dynamically active independent length scales are
observed during the first regime, which implies a break-
down of the classical definition of self-similarity. Never-
theless, the time evolution of the HIT statistical quantities
is identical to a self-similar solution of a classical two-range
spectrum, whose large-scale shape is equal to the parame-
ter σ2 related to the energetic large scales in the composite
spectrum. Therefore, this regime can be considered as a
pseudo-self-similar regime. For t > tc(σ1, σ2, l1(0)/l2(0)),
this regime turns into a classical self-similar decay.

In the case of infinite critical time, a permanent non-
self-similar regime is triggered. Moreover, the decay
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Figure 2. EDQNM results for (a) the decay of the energy spectrum E(k, t) and (b) the time evolution of the power law exponent
nu2 , considering a composite three-range initial energy spectrum at Reλ (0) = 105. The case of finite critical time, with σ1 = 3
and σ2 = 2, is investigated.

10
−4

10
−2

10
0

10
2

10
4

10
6

10
−20

10
−16

10
−12

10
−8

10
−4

10
0

kl

E
(k

)
u
2
l

 

 

τ = 102

τ = 104

τ = 106

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
−20

10
−16

10
−12

10
−8

10
−4

10
0

kl

E
(k

)
u
2
l

 

 

Reλ = 104

Reλ = 103

Reλ = 102

(a) (b)
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composite three-range initial energy spectrum (σ1 = 3 and σ2 = 2) and (b) classical Saffman turbulence decay are reported.

regime will behave as if it was self similar and driven by
a parameter σ∞ ∈ [σmin(1,2), σmax(1,2)].

The most important conclusion that can be drawn by
the present work is that the decay rate of kinetic energy,
as well as for the other statistical quantities, is not tied to
the asymptotic behaviour of large scales, i.e. E(k→ 0) in
the general case of a three-range initial energy spectrum.
Both theoretical analysis and detailed investigation of non-
linear transfers by the EDQNM model show that the very
large scales are not active, in the sense that their associated
energy transfers are almost negligible. Conversely, the large
scales close to the peak of the energy spectrum are of major
importance in the energy cascade. Moreover, the results
indicate that it is not possible to deduce information about
the shape of the spectrum at large scales, and in particular
about self-similarity, by the sole analysis of the decay of
HIT statistical quantities.

From the physical point of view, the dependency on
detailed features of the spectrum at large scale deserves cer-
tainly further investigation, and may, at least partially, ex-
plain the observed discrepancies between experimental data
and theoretical predictions, since the energy peak detailed

features may be intimately related to the turbulence produc-
tion mechanisms, which are not universal.
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