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ABSTRACT
Without an energy source, a turbulent velocity field

will decay with dynamics dictated by the well-known
Karman-Howarth equation. In Direct Numerical Simula-
tion (DNS) studies, turbulent fields are maintained at a state
of statistical stationarity (constant Taylor-Reynolds num-
ber, Reλ ) by supplying such an energy source. The en-
ergy source comes in the form of a velocity field forcing
method, which involves the addition of a source term to the
momentum equation. This momentum source term mani-
fests also in the Karman-Howarth equation, and has a form
determined uniquely by the specific forcing method imple-
mented. To ensure the dynamics obtained from the velocity
field-forcing methodology are physically correct, their im-
pact on the behavior of the Karman-Howarth equation has
been undertaken and attention has been paid to the func-
tional form of the forcing method-imposed source term ap-
pended. Two velocity field forcing methods are considered
in this study, Lundgren’s linear forcing method (Lundgren
(2003))) and Alvelius’ spectral forcing method (Alvelius
(1999)). It was found that the two disparate forcing tech-
niques produce source terms in the Karman-Howarth equa-
tion that behave very similarly at small scales, but diverge
at the intermediate and large scales. An important conse-
quence of this is that the velocity fields generated by the two
methods exhibit comparable statistical and spectral charac-
teristics at these small scales. The contradictory character-
istics of the turbulent fields at the large and intermediate
scales can be traced similarly back to the differing behavior
of the source terms at these scales and their influence on the
governing Karman-Howarth equation.

INTRODUCTION TO VELOCITY FIELD FORC-
ING METHODS

The two most commonly-used methods for prevent-
ing turbulent velocity field decay are via spectral forcing
in wave-space and linear forcing in real-space. Spectral
velocity forcing techniques, of which the Alvelius forcing
scheme is just one example, are attractive, as they allow
for precise control over the location of energy injection.
This injection can be concentrated within a small number
of modes lying within a specified waveshell, κ f , with the
modes lying outside this waveshell being unimpacted by the
forcing term.

The implementation of Alvelius’ spectral forcing

scheme results in a (spectral space) momentum equation of
the form shown in Eq. 1, where f̂ (κ, t) is a solenoidal forc-
ing term constructed from geometric constraints and F de-
notes the Fourier transform. The forcing term is active only
within a narrow band of waveshells, 2 ≤ κ ≤ 4, and it is
defined to be locally mutually orthogonal to the wavevector
and to the velocity Fourier vector. This orthogonality pre-
vents the source term, f̂ (κ, t), from being correlated with
the velocity field, preventing the velocity field and forcing
term from developing any detrimental coupling.

∂ û
∂ t

= F

(
ν∇2u−u ·∇u−∇

(
p
ρ

))
+ f̂ (κ, t) (1)

More attractive from an implementation perspective is
a physical-space forcing technique. Physical-space tech-
niques can be integrated into non-spectral codes and do not
require periodic boundary conditions, a restriction of spec-
tral schemes. Lundgren (2003) developed such a forcing
(termed “linear forcing” throughout this paper), which was
successfully implemented by Rosales & Meneveau (2005).
Lundgren’s linear forcing method injects energy into the ve-
locity field in proportion to the magnitude of the velocity
field fluctuations, u. This injection is biased preferentially
towards the production scales. As the amplitude of the fluc-
tuations typically scales with length, the larger flow scales
are supplied with more energy compared to the smaller flow
scales. In this respect, it is consistent with spectral forcing
schemes, although the linear scheme acts over all scales of
the flow. When implemented, the momentum equation that
is derived is shown in Eq. 2, where Qu is the source term
appended and Q is a constant related to the eddy-turnover
time of the velocity field, τ .

∂u
∂ t

+u ·∇u =−∇
(

p
ρ

)
+ν∇2u+Qu (2)

Generally, the metrics by which a velocity field forcing
is evaluated are its single-point statistics, Reynolds stresses,
velocity field variances, and scaling in the energy spectrum.
However, it is the argument of this paper that these are not
sufficient to ensure adequate performance and physical fi-
delity. Instead, it is the transfer spectrum, velocity structure
functions, and velocity correlation functions that are key in
evaluating the character of the turbulence produced by forc-
ing techniques.
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SIMULATION STUDY
The configuration of interest is triply periodic box tur-

bulence. The turbulence contained within the computa-
tional domain is homogeneous and isotropic. Thus, the
velocity field forcings briefly described will be evaluated
against their ability to reproduce the statistical and physical
character of such conditions.

To examine the transfer spectra and structure func-
tions of the velocity fields generated by the two forcing
techniques, a simulation study was conducted at a con-
stant Reλ = 140 with the accepted spatial resolution of
κmaxη = 1.5 at N3 = 5123. The kinematic viscosity was
0.0075 and 0.0028 m2/s for linear and spectral forcing, re-
spectively. This Reλ is of comparable magnitude to exper-
imentally attainable Reλ (e.g. Gagne et al. (2004), Myd-
larski & Warhaft (2006)). The code package used to con-
duct the study is discretely energy-conserving and imple-
mented in physical space; additional details can be found in
Desjardins et al. (2008).

The structure of the turbulence generated by each of
the two forcing techniques will be examined. Specifically,
the second- and third-order longitudinal structure functions
are calculated. These are compared to the theoretical scal-
ing laws derived for the inertial subrange. Then, the transfer
spectra are calculated to identify the extent (if any) of scale
separation present in the flow field. Using the observations
from these steps, the effect of the different forcing methods
is explored via investigation of their impact on the Karman-
Howarth equation. From this analysis, the reasons for the
disparities between the linearly- and spectrally-forced tur-
bulent fields are presented.

Statistical Behavior
Beginning with single point statistics, the performance

of both forcing methods, linear and Alvelius forcing, are
comparable. They have been shown to produce the sta-
tistical requirements for homogeneous isotropic box turbu-
lence by Alvelius (1999) and Rosales & Meneveau (2005).
These requirements were defined to be equal-averaged ve-
locity field variances and zero-averaged Reynolds stresses
with reflectional symmetry.

Energy Spectra
The most commonly examined two-point statistic used

to qualify the merit of a forcing technique is the result-
ing energy spectrum, E(κ). Specifically, the scaling region
across the intermediate wavenumber range is of primary in-
terest. Under sufficiently high Reλ this region is known as
the inertial sub-range, where all dynamics are purely invis-
cid. Kolmogorov predicted that the energy content within
this region ought to scale as E(κ) ∼ κ−5/3. Generally, if
a forcing scheme is able to reproduce this scaling, it is ac-
cepted as valid.

Energy spectra at Reλ = 140 are presented in Fig. 1
for both forcing techniques. The energy spectra predicted
by these forcing methods are compared to a slightly modi-
fied version of the model spectrum offered by Pope (2000),
which is defined in Eq. 3. Here, C(κ) is a constant of
units inverse length, ε is the energy dissipation rate, κ
is the wavenumber, L is a large length scale, η is Kol-
mogorov’s scale, and cη , β , and cL are constants deter-
mined by Reλ . The model spectrum was used to determine
the scaling of the energy spectrum across the inertial sub-
range, n, by fitting the dissipative region. Upon performing
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Figure 1. Energy spectra compared to a modified version
of the model spectrum defined by Pope (2000) (Eq. 3).

a fit to the DNS-obtained energy spectra, it was determined
that the Alvelius-produced spectrum displayed very nearly a
E(κ)∼ κ−5/3 scaling across this region, while the linearly-
forced spectrum displayed a much weaker scaling with κ ,
reasonably represented by E(κ)∼ κ−1.42.

fη (κη) = exp
(
−β{

(
(κη)4 + c4

η

)1/4
− cη}

)

fL(κL) =


 κL
(
(κL)2 + cL

)1/2




11/3

E(κ) =C(κ)ε2/3κ−n fL(κL) fη (κη) (3)

The Alvelius forcing appears to produce an almost per-
fect κ−5/3 across the intermediate, supposedly inertial, sub-
range of wavenumbers. The linear forcing clearly produces
a spectrum with a weaker wavenumber scaling. For this rea-
son, among others, spectral forcing is taken generally to be
the preferred forcing method for numerical studies of turbu-
lent physics. However, when more closely examined, this is
shown to be insufficient to ensure the correct physics and
may, in fact, be a misleading metric.

Transfer Spectra
In spectral space, the turbulent kinetic energy equation

can be written as Eq. 4, where E(κ, t) = 1
2 u(κ, t) · u(κ, t)

is the turbulent kinetic energy of the fluid, T (κ, t) is the
energy transfer function, and the last term is viscous en-
ergy dissipation at the small scales. This expression mathe-
matically represents the energy transfer (cascade) from the
larger scales to the progressively smaller scales. It is the
transfer term, T (κ, t), which is key in determining the struc-
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Figure 2. Transfer spectra produced by the two forcing
methods. The transfer spectra are averaged over 5 eddy-
turnover times. The slight spike near zero is due to simula-
tion resolution. For the present purpose, it can be neglected.

ture of the turbulent field.

∂E(κ, t)
∂ t

=−∂T (κ, t)
∂κ

−2νκ2E(κ, t) (4)

For a true inertial sub-range to manifest, there must be com-
plete separation of the production (large, inertial) and the
dissipation (small, viscous) scales; no overlap is allowed.
Under such conditions, there will be a region of waves-
pace over which the transfer spectrum, T (κ, t), will have a
value of zero, as rigorously shown by Qian (1997). The true
inertial subrange only exists over the region across which
T (κ, t) = 0.

The transfer spectrum for each case in this simulation
study was computed according to Eq. 5, and the results are
depicted in Fig. 2. The large scales correspond to large neg-
ative abscissa values. In Eq. 5, ui is the pertinent component
of velocity, ( ˆ ) denotes a Fourier coefficient, (∗), denotes
complex conjugation, and F denotes the Fourier transform.
From Fig. 2, one can note that in neither case is there any
discernible wavenumber range over which the value of the
transfer spectrum assumes a value of zero. As Reλ = 140 is
not tremendously high, this is not surprising.

T (κ, t) =−û∗i F
(

u j
∂ui

∂x j

)
(5)

If the Reλ is to low, the anisotropy at the large-scales
can penetrate into the smaller scales of the flow. This per-
meation of anisotropy is known as the finite-Reλ effect. A
consequence of such an effect is a non-zero transfer spec-
trum and the loss of inviscid behavior across the interme-
diate wavenumber range. In the absence of a true inertial
region, it is quite unexpected to obtain a κ−5/3 dependence
(Fig. 1(a)).

Structure Functions
The second- and third-order longitudinal structure

functions are defined in Eq. 6. In Eq. 6, 〈 〉 denote volu-
metric spatial averages and r is the distance (magnitude) by
which two points in an isotropic flow field (u) are separated
along the direction of unit vector l. Within the inertial sub-
range, these structure functions admit known scalings, as
provided in Eq. 7 (Lundgren (2002)).

Bll(r, t) = 〈[u(x+ r l, t)−u(x, t)]2〉 (6)

Blll(r, t) = 〈[u(x+ r l, t)−u(x, t)]3〉

(a) Bll(r, t)∼CK(εr)
2
3 (b) Blll(r, t)∼−

4
5

εr (7)

It is from these scalings that the classic κ−5/3 law for the
energy spectrum comes. It has been shown experimentally
by Gagne et al. (2004) and analytically by Qian (1997) that,
for Reλ < O(103), Bll and Blll do not exhibit these asymp-
totic scalings; there is not sufficient scale separation at these
Reλ to support inviscid dynamics. Moreover, Mydlarski
& Warhaft (2006) and Moisy et al. (1999) have reported
a scaling constant less than −5/3 for experimental studies
at comparable Reλ .

The second- and third-order longitudinal structure
functions were calculated for both cases included in this
study. As depicted in Fig. 3(a) and Fig. 3(b), the asymptotic
scaling values indicated in Eq. 7 are not obtained. When
compensated, Blll is not 0.8 and Bll is not CK = 2 across
any range of scales. In fact, Bll for the spectral forcing
exceeds the asymptotic limit of 2, in violation of empiri-
cal evidence. However, when examining the energy spectra
previously presented in Fig. 1, a discrepancy arises.

Alvelius’ spectral forcing, even at the relatively low
Reλ = 140 (Fig. 1(a)), is exhibiting very near to the
Kolmogorov-predicted κ−5/3 scaling, suggesting the pres-
ence of inviscid dynamics in contradition to the behavior in-
dicated by its structure functions. There is a clear inconsis-
tency present in these spectral scheme results. Meanwhile,
the linear forcing does not produce a κ−5/3, fully consis-
tent with the behavior of its structure functions and with
published experimental data. This suggests that there might
be a fundamental inconsistency between the spectral forcing
technique and the underlying turbulent physics it is trying to
reproduce. This is a concerning result, the implications and
cause of which will be considered in the following sections.

THE KARMAN-HOWARTH EQUATION
The Karman-Howarth equation relates the evolution

of second- and third-order longitudinal structure functions
for a decaying, isotropic turbulent field (Landau & Lif-
shitz (1989), Monin & Yaglom (1975)). In this work, the
“forced” Karman-Howarth equation is considered.

The Derivation of the Karman-Howarth Equa-
tion

The Karman-Howarth equation is given in Eq. 8, where
U2 is the average velocity field variance. The two terms
on the right-hand side represent the inertial (inviscid) pro-
cesses, through which the energy cascade is able to transfer
energy downward, and the dissipation term, through which
kinetic energy is dissipated by molecular viscosity. The left-
hand side term represents the time rate of change of kinetic
energy within the flow itself. Thus, to prevent the decay
of turbulence, as is the objective of any simulation forcing
scheme (e.g. Alvelius’ spectral forcing, Lundgren’s linear
forcing), the scheme implemented must compensate for this
left-hand side term.

∂U2

∂ t
− 1

2
∂Bll

∂ t
=

1
6r4

∂
(
r4Blll

)

∂ r
− ν

r4
∂
∂ r

(
r4 ∂Bll

∂ r

)
(8)

The specific form of the left-hand side time deriva-
tive is contingent upon the condition of isotropy. As dis-
cussed by Monin & Yaglom (1975), the following equality
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Figure 3. Structure functions produced by the two forc-
ing methods. Accepted asymptotic limits are indicated by
dashed lines. Structure functions are reported for half of the
computational domain, r = [0, π], and are compensated.

has been applied: Bll(r, t) = 2 [Dll(0, t)−Dll(r, t)], where
Dll(r, t) = 〈ul(x, t)ul(x+ r l, t)〉 is the longitudinal velocity
correlation function. Accordingly, the time derivative term
can be expressed as Eq. 9. In component form, this time
derivative is written as Eq. 10, where u(x+ r l) = u′.

∂Dll(r, t)
∂ t

=
∂ 〈ul(x, t)ul(x+ r l, t)〉

∂ t
=

∂U2

∂ t
− 1

2
∂Bll

∂ t
(9)

∂Dll(r, t)
∂ t

= 〈ui
∂u′i
∂ t

+u′i
∂ui

∂ t
〉 (10)

By inspection, the source term needed to prevent the decay
of the turbulent field must take the form of Eq. 10. Taking
the source term in concert with the Karman-Howarth equa-
tion (Eq. 8), the “forced” Karman-Howarth equation can be
expressed as Eq. 11.

∂Dll(r, t)
∂ t

=
∂U2

∂ t
− 1

2
∂Bll

∂ t
=

1
6r4

∂
(
r4Blll

)

∂ r
− ν

r4
∂
∂ r

(
r4 ∂Bll

∂ r

)
+Sll(r, t) (11)

The source term in Eq. 11, Sll(r, t), is the source term for
the longitudinal correlation function, Dll(r, t). Note that
Dll(r, t) is a function of the norm (magnitude) of the two-
point separation vector r. This should be distinguished from
the full, three-dimensional source term, S(r, t), that is deter-
mined by the forcing method used and the appropriate vol-
ume integral of which yields the longitudinal source term.

Sll(r, t) =
1
r3

∫ r

0
r2 S(r, t) dr (12)

Forcing-imposed Source Terms
Lundgren’s linear forcing appends a source term of

the form Qu to the momentum equation. By applying this
source term to Eq. 10, recalling the definition of the velocity
correlation function, Ri j(r, t) = 〈ui (x+ r, t)u j (x, t)〉, and
making use of correlation function identities (delineated in
Lundgren (2003)), the source term that results is given by
Eq. 13. This is the source term the linear forcing method
imposes for Dll(r, t).

Sll(r, t) =
2Q
r3

∫ r

0
r2Rii(r, t) dr = Q

(
2U2−Bll(r, t)

)
(13)

Alvelius’ narrow waveband forcing necessarily im-
poses a different source term for Dll(r, t) on the Karman-
Howarth equation. In the development of this spectral forc-
ing technique, a discretized approach was taken (Alvelius
(1999)). In the analysis to follow, fi(x) is the real-space
forcing function obtained from the random solenoidal spec-
tral forcing term, f̂ (κ), i denotes the component of the ran-
dom force, and n denotes the time-step. The amount of
power injected within the specified waveshell band is de-
termined by P1 =

1
2 f n

i f n
i ∆t.

Due to the discrete nature of its derivation, the source
term that results is similarly discrete. Writing the time-
derivative of velocity as a finite-difference in terms of the
real-space analog of f̂ (κ), the source term that is admit-
ted for the Karman-Howarth equation is given in Eq. 14.
Here, k are those wavevectors which have magnitudes (κ)
bounded by 2 ≤ κ ≤ 4, the power injected is specified to
be distributed as a Gaussian centered about κ f = 3, and the
constants, C (= 0.5) and D, determine the width and correct
normalization of the Gaussian, respectively.

S(r, t) =
P1

2π ∑
κ

exp(−iκ · r)
κ2
√

Dπ
exp

(
−
(
κ−κ f

)2

C

)
(14)

The fact that the linear forcing produces a source
term composed of physically-meaningful parameters, while
Alvelius’s forcing does not is not surprising. Lundgren pro-
posed a forcing term (Qu) that mimicked the actual mech-
anism that leads to and sustains naturally occurring turbu-
lent flows, namely shear. Alternatively, Alvelius focused on
capturing the statistical nature of turbulence. By creating
a solenoidal forcing active only over a contrived region of
wavespace, Alvelius ensured the perfect statistical nature of
the resulting turbulent velocity fields, although the narrow
waveband energy injection employed is not entirely consis-
tent with the physics of a real turbulent flow.

Source Term Behavior
By observation of Fig. 3(a) and Fig. 3(b), the velocity

fields produced by these two forcing methods are largely
similar at small scales (small r, large κ) and very different
at large scales (large r, small κ). Analyzing the functional
dependency of their respective source terms on scale size
can provide insight into these observations. To facilitate a
comparison, the source terms for the longitudinal velocity
correlation functions, Sll(r, t), for the two forcing methods
are evaluated. The results are depicted in Fig. 4. The source
terms presented both take the form of autocorrelation func-
tions. This is explicitly stated in Eq. 13 and Eq. 14. It is ex-
pected that there is high velocity component correlation at
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Figure 4. Forcing method-imposed source terms ap-
pended to the Karman-Howarth equation. One-half of the
computational domain is plotted, r = [0,π].

small displacements, which becomes progressively weaker
as the separation increases. This is what is observed with
linear forcing, but not what is present with Alvelius’ spec-
tral forcing. With Alvelius’ forcing, the increase in corre-
lation of the source term at large separation is due to the
injection of energy at these large scales, while the steady,
consistent decline in correlation prior is due to the finite
bandwidth over which momentum is supplied to the veloc-
ity field.

The analysis to follow is broken down into three parts.
First, the forced Karman-Howarth equation will be briefly
revisited. Second, the small scale source term behavior is
investigated. Third, source term behavior at large and inter-
mediate scales is discussed.

Forcing-imposed Correlation Functions
In the forced Karman-Howarth equation (Eq. 11), recall that
the time derivative term is equivalent to the time derivative
of the longitudinal velocity correlation function, Dll . This
implies that the effect of velocity field forcing methods is to
enforce on the turbulence a prescribed velocity field distri-
bution via a frozen (temporally fixed) longitudinal velocity
correlation. The correlation functions calculated from the
velocity fields produced by the two forcing methods are il-
lustrated in Fig. 5. By inspection, these curves are in agree-
ment at the small scales (r/η < 30) and deviate past this
point (intermediate and large scales). This suggests that the
two forcing methods have the same effect on the turbulence
at these small scales, r/η < 30. It is the source terms that
are responsible for prescribing the correlation function on
the turbulent field. Thus, the consistency of Dll(r) at the
small scales and the divergent large scale behavior should
be justifiable by examination of the source terms them-
selves. As an aside, it is noteworthy that r/η ∼ 30 is often
considered to be the peak of the dissipation spectrum (Pope
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Figure 5. Forcing method-imposed velocity correlation
functions. One-half of the computational domain is plotted,
r = [0,π]. Inset shows r vs. Dll(r)/U2.

(2000)).

Dissipation Range Restricting attention to the
small scales, in the limit of r→ 0 under stationary condi-
tions, the forced Karman-Howarth equation will retain only
the applied source term and the viscous term, as Blll(r) can
be expected to be negligible in this viscosity-dominated re-
gion. As it has been shown that the two source terms behave
quite similarly in this small scale region, both source terms
can be represented by Eq. 13. The resulting partial differ-
ential equation can be solved for Bll(r) via a series solution
of the form of Eq.15. Due to the even nature of the second-
order structure function, only even powers of r are needed.
Additionally, the definition of Bll(r) mandates that the first
coefficient term obey a0 = 0, making the leading order term
in the expansion parabolic with coefficient a1 =

1
5 QU2/ν .

Bll(r) =
∞

∑
n=1

anr2n = a1r2 +a2r4 +a3r6 + ... (15)

In the description of the linear forcing method, it was
stated that the forcing coefficient, Q, was related to the
eddy-turnover time for the velocity field; more exactly,
Q = (2τ)−1, where τ = k/ε , the ratio of turbulent ki-
netic energy to the viscous dissipation rate. Thus, Q can
be written as Q = ε/ 3U2. Also, under the condition
of isotropy, the dissipation rate can be expressed as ε =
15νU2/λ 2

g , where λg is the transverse Taylor micro-scale.
In light of these expressions, the significance of a1 becomes
clear. In terms of these physical parameters, it can be writ-
ten a1 = ε/15ν = U2λ−2

g , which is the inverse timescale
(squared) appropriate for small scale physics. This finding
is important, as it suggests that the small turbulent length
scales are not affected detrimentally by either of the forc-
ing techniques. Instead, the effect is simply to enforce the
physically-appropriate length- and time-scales.

When this series solution for Bll(r) was compared to
the DNS data for both forcing methods (Fig. 3), agree-
ment was found to persist until approximately r/η ∼ 10,
when the viscous effects presumably cease to be dominant.
This suggests that past r/η ∼ 10, Blll(r) can no longer be
neglected and the inertial term begins to manifest. In the
comparison, only four terms were included in the series so-
lution; the higher order contributions had negligible impact.

Further, when isolated, the source terms for both forc-
ings assume a value of Sll(r = 0) = 2

3 ε at zero separation.
By inspection of the time derivative in the forced Karman-
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Howarth equation, Eq. 11, at r = 0, the second-order struc-
ture function necessarily vanishes, leaving only the time-
derivative of the velocity field variance, ∂U2

∂ t . This can be
confirmed straightforwardly to be equivalent to 2

3 ε . This
finding is key in supporting the claim that the sole impact
that these forcings are having at the smallest scales is to
compensate for physically-relevant losses. This is addi-
tional evidence that at the smallest scales, the forcing meth-
ods are not altering artificially the governing physics.

Intermediate and Large Scales One of the
objectives of this research was to show that simply attain-
ing the right statistical behavior and an approximate κ−5/3

scaling in the energy spectrum was not sufficient to verify
that a forcing method could reproduce the “correct” physics
in the velocity field. Instead, the transfer spectrum, structure
functions, and velocity correlation functions are necessary.
It has been established in the previous sections that the small
scale behavior is captured correctly irrespective of the forc-
ing scheme used, and the metrics calculated there (spectra,
structure functions) are consistent with experimental data.
However, at the intermediate and large scales, in the case of
Alvelius forcing, physical behavior contradictory to exper-
imental data is recovered in both the transfer spectrum and
structure function scaling. This suggests that the turbulence
at these scales may be suspect in nature, despite the κ−5/3

scaling obtained in the energy spectrum. This highlights
the need to evaluate additional metrics prior to accepting
the merit of a velocity forcing method. By determining the
behavior of the source term for the correlation function in
the governing Karman-Howarth equation, the impact of a
forcing technique can be qualified.

Implications for the Karman-Howarth Equa-
tion

The behavior of these two source terms have implica-
tions for the forced Karman-Howarth equation, which are
discussed best in the context of the longitudinal correla-
tion functions the forcing methods impose. The addition of
a forcing term to the Karman-Howarth equation freezes in
time the velocity correlation function, Dll(r). From obser-
vation of Fig. 5, the two forcing methods produce equivalent
velocity correlation functions at small r, imposing the same
velocity field distribution over these scales. At the interme-
diate and large scales, however, they are imposing different
velocity field correlations (structures) on the turbulence. It
is this difference which accounts for their disparity at the
larger scales, explains how the two approaches fundamen-
tally impact the behavior of the governing (forced) Karman-
Howarth equation, and causes the disagreement between the
structure functions, transfer spectra, and energy spectra cal-
culated from the linear and spectral forcing methods.

CONCLUSIONS
In summary, at a Reλ = 140, as confirmed by experi-

mental data, there should not be a true inertial subrange of
scales. Accordingly, there should not be a κ−5/3 scaling

region present in the energy spectrum. The linear forcing
method produces turbulent physics that are consistent with
experimental findings and produces metrics (e.g, structure
functions, spectra) that are self-consistent. There is, how-
ever, a discrepancy in the velocity field physics produced
under the action of Alvelius’ spectral forcing. The energy
spectrum does not agree with experimentally obtained scal-
ings for this Reλ , and it appears to be inconsistent with
the transfer spectrum obtained. Additionally, the generated
structure functions do not agree with empirical results.

The source terms that each forcing imposes in the
Karman-Howarth equation have been investigated. It was
found that the source terms display similar behavior at small
scales and very different behavior at large scales. These
large scale disparities are reflected in the divergent behav-
iors observed in the energy spectra, transfer spectra, and
structure functions calculated. The velocity-field forcing
method has been shown to be irrelevant at the small scales,
with differences manifesting only outside the dissipation
region. Additionally, the differences in the physical char-
acter of the turbulence that the two forcing methods pro-
duce have been attributed to the differing velocity corre-
lation functions that they impose on the (forced) Karman-
Howarth equation.
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