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ABSTRACT
The scale-similarity model was proposed by Bar-

dina et al. (1980) some 30 years ago. It was found
not to be sufficiently dissipative. Much later, David-
son (2009) found a way to make it strictly dissipa-
tive. This was simply achieved by selecting those in-
stants when the scale-similarity term in the momen-
tum equation has the same sign as the viscous diffu-
sive term (the latter term is indeed dissipative). In
Davidson (2009) this technique was also used the
other way around: by selecting time instants when
the scale-similarity term has theopposite sign to the
viscous diffusion term it acts as a backscatter term,
which destabilizes the momentum equation. This fea-
ture is exploited in the present work to promote the
generation of resolved turbulence. It is used to pro-
mote the creation of resolved turbulence in embedded
LES of channel flow, and LES of developing bound-
ary layer and backstep flow. The present method re-
duces the gray area problem described by Spalart
(2009). The proposed method can also be used to pro-
mote transition from laminar to turbulent flow.

1 BACKSCATTER FROM THE SCALE-
SIMILARITY MODEL
The momentum equations for LES, with a turbu-

lent viscosity and an additional SGS stress tensor,τik,
from the scale-similarity model, read
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whereD/Dt denotes material derivative; superscript
′−′ denotes backscatter. The stress tensor,τik, is
obtained from the scale-similarity model (Speziale,
1985)

τik = ūiūk − ¯̄ui ¯̄uk (2)

The explicit filtering in Eq. 2 is carried out on a grid
of 2∆; hence the SGS stress stress can be regarded as

a dynamic Leonard stress in the dynamic model (Ger-
manoet al., 1991). In the present study−∂τik/∂xk

is used as aforcing term (i.e. backscatter), see Eq. 1.
Hence, we must make sure that it does not give rise
to any SGS dissipation (i.e. forward scatter) but only
backscatter. To this end, let us take a closer look at
the equation for the resolved, turbulent kinetic energy,
K = 〈ū′iū′i〉/2, which reads (〈.〉 denotes averaging in
time)
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where the right side represents the viscous and SGS
diffusion terms in the momentum equation for ¯u′i,
multiplied by the fluctuating velocity, ¯u′i. The right
side can be re-written as
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The first term on the left side is the non-isotropic (i.e.
the true) viscous dissipation,εnon; this is predomi-
nately negative. The first term on the right side is
the viscous diffusion, and the second term,ε, is the
(isotropic) viscous dissipation, which is always posi-
tive. The last term,εSGS, is a source term arising from
the SGS stress tensor, which can be positive or neg-
ative. When it is positive, forward scattering takes
place (i.e. it acts as a dissipation term); when it is
negative, back scattering occurs. Hence, to achieve
forcing, we want to make sure that this term is nega-
tive.

Consider the left side of Eq. 4. We know that the
viscous diffusion in the momentum equation is dissi-
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pative (forward scatter in theK equation). We want
the SGS stress tensor to act as backscatter in theK
equation. Hence we add the SGS stress tensor term,
−∂τik/∂xk, to the momentum equation only when its
sign isopposite to that of the viscous diffusion term.
This is conveniently achieved as (Davidson, 2009)

Mik = sign

(
∂τik

∂xk

∂ 2ū′i
∂xk∂xk

)
. (5)

(no summation oni,k). The resolved fluctuation, ¯u′i,
is not known at run-time. It could be computed as
ū′i = ūi−〈ūi〉ra, where〈ūi〉ra denotes the running-time
average of ¯ui. It was shown in Davidson (2009) that,
for y+ & 20 in channel flow, the second derivative of
ū′i is almost 100% correlated with that of ¯ui. Hence,
in the present work, Eq. 5 is replaced by

Mik = sign

(
∂τik

∂xk

∂ 2ūi

∂xk∂xk

)
(6)

(no summation oni,k). Each component of the diver-
gence of the SGS stress tensor in Eq. 1 is then simply
multiplied byM̃ik, i.e.

M̃ik = max(Mik,0),

(
∂τik
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)−
=−M̃ik

∂τik

∂xk
(7)

(no summation onk). In Davidson (2009), the scale-
similarity model was used for forcing in a small, local
region surrounding the RANS-LES interface. In the
present work, it is used in the entire LES region. Be-
cause the role of this term is to act as a forcing term, it
may happen that the forcing becomes too large, mak-
ing the numerical solution of the equation system un-
stable. Hence the magnitude of the forcing term must
be limited. Its magnitude in the present work is lim-
ited by relating it to part of the diffusion as

∣∣∣∣−
∂τik
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∣∣∣∣≤ β (ν+νSGS)

∣∣∣∣
∂ 2ūi

∂xk∂xk

∣∣∣∣ ,no summation onk

(8)
The baseline value ofβ is β = 2.

In the present work, the scale-similarity stresses,
Eq. 2, are computed by explicit filtering; an alterna-
tive approach may be to estimate them using Leonard
expansion (Peng & Davidson, 2009; Peng, 2012).

2 THE PANS LRN k− ε MODEL
The LRN PANS turbulence model (Girimaji,

2006; Maet al., 2011) is used and reads
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Figure 1. Flow configurations.
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Figure 2. Added synthetic fluctuations at interface or inlet.
: ū′+rms; : v̄′+rms; : w̄′+

rms; • : 〈ū′ v̄′〉+.
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where fε = 1. In the LES region,fk = 0.4.

3 NUMERICAL METHOD
An incompressible, finite volume code is

used (Davidson & Peng, 2003). The convective terms
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Figure 3. Skin friction. backscatter; no backscat-
ter; backscatter withβ = 3, see Eq. 8; :target
value.
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Figure 4. Resolved normal stresses atx = 3.
backscatter; no backscatter.
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Figure 5. Resolved shear stresses.x=1.25: with markers;
x = 3: without markers. backscatter; no backscat-
ter.
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Figure 6. Shear stresses atx = 3. 〈(−∂τ12/∂y)−〉;
〈−∂τ12/∂y〉, Eq. 8 not used; 〈(−∂τ12/∂y)−〉, Eq. 8

not used;◦: −∂ 〈ū′ v̄′〉/∂y. +: ∂/∂y〈((ν +νSGS)∂ ū/∂y)〉.

in the momentum equations are discretized using 95%
central differencing and 5% second-order bounded
upwinding (van Leer (1974)). Thek andε are dis-
cretized using the hybrid scheme (first-order hybrid
upwinding and central differencing). The second-

3



August 28 - 30, 2013 Poitiers, France

HBE

0 50 100 150

0

20

40

60
Channel flow

0 50 100 150
−20

0

20

40

60

80
Boundary layer flow

y+

Figure 7. Terms in theK equation, see Eq. 4. −ε−SGS;
−εSGS, Eq. 8 not used; −ε−SGS, Eq. 8 not used;◦:

40% of〈−ū′v̄′〉∂ 〈ū〉/∂y.
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Figure 8. Probability density function (PDF) of
−∂τ12/∂y, at x = 2.5, y+ ≃ 10. Thick vertical dashed
lines:±2〈(ν +νt )∂ 2ū/∂y2〉.

order accurate Crank-Nicolson is used in time.
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Figure 9. Backstep flow, computational domain.
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Figure 10. Backstep flow. Skin friction and Stanton num-
ber. Experiments Vogel & Eaton (1985). backscatter;

no backscatter.

4 RESULTS
We present results from three flows, embedded

LES in a channel flow, LES of a flat-plate bound-
ary layer and LES of the flow over a backstep.
Anisotropic fluctuating velocities (Davidson & Peng,
2013) are used at the interface in the channel flow
and at the inlet in the boundary layer flow and the
backstep flow, see Fig. 2. It may be noted that the
inlet fluctuations are scaled withkRANS (wherekRANS

comes from a pre-cursor RANS simulations) for the
boundary layer and backstep flow, whereas they are
not scaled for the channel flow. It was found in David-
son (2007) that, for channel flow, this approach is
more efficient in creating resolved turbulence.

4.1 Channel and boundary layer flow
The Reynolds number for the channel flow is

Reτ = 950 based on the friction velocity,uτ , and half
the channel width,δ , see Fig. 1. With a 6.4×2×1.6
domain, a mesh with 128× 80× 32 cells is used in
the streamwise (x), the wall-normal (y) and the span-
wise (z) direction. Forcing (backscatter) is used in the
entire LES region.
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Figure 11. Backstep flow. Resolved shear stresses.
backscatter; no backscatter.

The inlet Reynolds number of the boundary layer
flow is Reθ = 3600, which corresponds toReδ =
U f reeδin/ν ≃ 28000. The inlet mean profile is taken
from DNS (Schlatter & Orlu, 2010). The inlet height,
δin, see Fig. 1, is covered by 45 cells. The grid has
128×96×64 cells in the streamwise (x), wall-normal
(y) and spanwise (z) direction. Forcing (backscatter)
is used in the entire domain.

The friction velocity and the skin friction in Fig. 3
show that the backscatter makes the flow approach
fully developed conditions much faster than without
backscatter. Without backscatter, the skin friction in
the boundary flow does not reach the target value. For
the channel flow, theuτ does not reach the target value
of one (with or without backscatter) because the span-
wise resolution is not sufficient.

The influence of theβ coefficient in Eq. 8 is eval-
uated in Fig. 3. It is increased from the baseline value
of β = 2 to β = 3. As can be seen, it has little effect
for both the boundary layer flow and the embedded
channel flow. Ifβ is increased further for the channel
flow, nonphysical wiggles appear near the interface.
For the boundary layer flow, a value ofβ = 4 (not
shown) gives the same results asβ = 3. The limi-
tation in the forcing term using Eq. 8 is very impor-
tant for keeping the equation system stable. The forc-
ing has a strong built-in feedback: the more resolved
turbulence that is created with Eqs. 1, 6 and 7, the
larger the velocity gradients, and hence the forcing
term,−∂τik/∂xk, in Eq. 1 is further increased.

The resolved normal and shear stresses are pre-
sented in Figs. 4 and 5; it can be seen that the
backscatter, as intended, creates additional resolved

turbulence. It can also be seen that, in a region close
to the wall, the resolved shear stress is larger without
backscatter than with backscatter; the reason is proba-
bly the dominance of the production term (see Fig. 7).

Figures 6 and 7 show the influence of the
backscatter in greater detail. Figure 6 shows the ef-
fect in the momentum equation. It can first be noted
that the forcing scale-similarity term is fairly large;
its magnitude is approximately half of that of the re-
solved shear stress near the wall (y+ . 20). The lim-
iter in Eq. 7 is active (i.e.M̃ik = 1) during approxi-
mately 50% of the time fory+ > 30 and is even more
often active near the wall (maximum value of 80% at
y+ ≃ 10). This means that at the time instants when
the term−∂τik/∂xk acts as backscatter, it is actually
twice as large (even larger near the wall) than what is
shown in Fig. 6, see also Fig. 8. The limiter in Eq. 8
is much less active: it is active for less than 10% at all
y locations. Thus the forcing scale-similarity terms in
Fig. 6 with and without the limiter in Eq. 8 are virtu-
ally identical. It should be mentioned that all results
presented in Figs. 6 and 7 were obtained with Eqs. 7
and 8 active; they are made inactive only in the post-
processing.

The contribution of the forcing scale-similarity
term to the resolved kinetic energy,K (see Eqs. 3 and
4), is shown in Fig. 7. As in the momentum equation,
the magnitude of the forcing scale-similarity term is
comparable to that of the resolved turbulence (i.e. the
production term,〈−ū′v̄′∂ ū/∂y〉). The effect of select-
ing the forcing instants (i.e.ε−SGS, see Eq. 7) is large.
The scale-similarity term itself,εSGS (i.e. no Eq. 7),
is actually dissipative (i.e.−εSGS < 0) for y+ & 20.
The limit in Eq. 8 also has a fairly large effect, but the
other way around: it limits – as intended – the forcing
effect of the scale-similarity term. Without this limit,
the equation system rapidly diverges.

Figure 8 presents a histogram of the scale-
similarity term aty+ ≃ 10. The limit in Eq. 8 (with
β = 2) is shown as thick vertical dashed lines. As
can be seen, the limiter eliminates only extreme in-
stants. In the boundary layer flow, the limit is actu-
ally not active for negative−∂τ12/∂y. This explains
why largerβ can be used in the boundary layer flow
than in the channel flow. Note that the instantaneous
values of the the scale-similarity term (up to 200 and
300 for the boundary layer flow and the channel flow,
respectively) are much larger than their mean value
(approximately 20 for both flows, see Eq. 6).

4.2 Backstep flow
The Reynolds number for the backstep flow is

ReH = 28000, and the experiments were carried out
by Vogel & Eaton (1985). The grid has 336×152×
64 cells in the streamwise (x), wall-normal (y) and
spanwise (z) directions (see Fig. 9). The step is cov-
ered by 96× 52 cells in the streamwise and wall-
normal directions. The inlet boundary layers at the
upper wall and the step are covered by 45 cells; the
grid is stretched by 1.12 for 1< y < 3 (the same as
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for y < 2 in the boundary layer simulations). The
grid above the step is symmetric aroundy = 3. A
constant grid spacing is used in thex direction in
−4.6 < x < −0.27 with ∆x ≃ 0.05 (the same as in
the boundary layer simulations); the grid is geometri-
cally compressed by 0.89 in the region−0.27< x< 0.
The extent of the domain in the spanwise direction
is 1.6. The mesh in the recirculation region is taken
from Shuret al. (2008).

The inlet mean profile is taken from DNS (Schlat-
ter & Orlu, 2010) (the same as in the boundary layer
simulations). For the temperature, the inlet profile is
t = 0 (constant in both space and time). At the lower
wall, at y = 0, a constant heat flux,qw, is used for
x > 0. The inlet bulk velocity andH are set to one, so
thatν = 1/ReH. The forcing term in Eq. 1 is used for
x < 1, 1< y < 5. The predictions were not altered to
any great extent when the forcing term was used for
x < 7 (not shown).

The skin friction and the Stanton number are pre-
sented in Fig. 10. As can be seen, the skin friction
on the step is much better predicted with backscat-
ter in the same way as in the boundary layer flow (see
Fig. 3); indeed, the boundary layer on the step is iden-
tical to the boundary layer in Section 4.1 (same grid,
same inlet boundary conditions). In the recirculation
region, the backscatter has no noticeable effect on the
skin friction. However, the backscatter does have a
noticeable effect on the heat transfer (Stanton num-
ber), see Fig. 10. The peak inSt is well captured with
forcing.

Figure 11 presents the resolved shear stresses on
the step and in the recirculation region. As for the
channel flow and the boundary layer flow, backscatter
increases the resolved turbulence. The influence of
backscatter in the boundary layer on the step (Fig. 11)
is much larger than in the boundary layer (Fig. 5). The
reason may be that, in the backstep flow, the unstable
shear layer that emanates atx= 0 also introduces fluc-
tuations forx < 0, and these fluctuations are enhanced
by the forcing backscatter.

5 CONCLUSIONS
The present forcing method was used in embed-

ded LES. One problem in embedded LES is that the
flow does not go into turbulence-resolving mode suf-
ficiently quickly. This has been called thegray area
problem (Spalart, 2009). The present method can be
used in the interface region between RANS and LES
in general, both in embedded LES (interface normal
to the streamwise direction) and zonal hybrid LES-
RANS (interface parallel to a wall). The proposed
method can also be used to promote transition from
laminar to turbulent flow.

The forcing is taken from the scale-similarity
model. It is defined as forcing when the sign of
the force (per unit volume) from the scale-similarity
model is opposite to that of the viscous diffusion. The
forcing term could maybe instead be taken from syn-

thetic turbulence or white noise, selecting – as in the
present method – the time instants when the force rep-
resents backscatter.
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