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ABSTRACT
In Rasam et al. (2011) we compared the perfor-

mance of the explicit algebraic subgrid-scale (SGS) model
(EASSM) (Marstorp et al., 2009) with that of the conven-
tional dynamic Smagorinsky model (DSM) in large eddy
simulation (LES) of channel flow using a pseudo-spectral
Navier–Stokes solver. We showed that, due to the better
prediction of the individual SGS stresses in a wide range of
grid resolutions and due to the nonlinear SGS stress con-
tribution by the model, the EASSM predictions were less
resolution dependent and more accurate than those of the
DSM. As the first step in this study towards LES in complex
geometries, we extend our previous study and perform LES
of turbulent channel flow at Reτ = 590 using the EASSM
and the code Saturne, which is an unstructured finite vol-
ume solver suitable for LES in complex geometries. The
results are compared to those of the DSM and show that
the EASSM predictions of the wall shear and the Reynolds
stresses are more accurate. LES results using the EASSM
obtained from the code Saturne are also compared to those
obtained using the pseudo-spectral solver obtained in our
previous study (Rasam et al., 2013). As the next step, we
are performing LES of flow over periodic hill using the
EASSM and the code Saturne. The results will be com-
pared with those of the DSM and the reference LES and
will be presented at the conference.

Introduction
The importance of nonlinear SGS stress contribution

in LES of wall-bounded flows is well known and the com-
monly used assumption of an isotropic linear relation-
ship between the SGS stress and the resolved strain-rate
tensor is not truly valid for such flows (Horiuti, 2003;
Marstorp et al., 2009; Wang & Bergstrom, 2005; Kosovic,
1997; Rasam et al., 2011). The value of nonlinear SGS
stress models in LES of more complex flows is still an open
issue and needs to be more investigated.

Although application of nonlinear SGS stress models is
important in LES of turbulent flows in complex geometries,
it can also have an impact on LES results in more simple
geometries like channel flows with and without system rota-
tion. In (Rasam et al., 2011), we showed that application of
isotropic SGS stress models, e.g. the eddy viscosity model,
leads to LES predictions that are strongly resolution depen-
dent. It was also shown that LES results using such models
at coarse resolutions, where the SGS anisotropy is appre-

ciable, are very inaccurate due to the lack of the nonlin-
ear SGS stress contribution. Therefore, resolution require-
ments to produce reliable LES predictions using eddy vis-
cosity models, approaches that of the DNS (Baggett et al.,
1997; Choi & Moin, 2012). We showed that using the
explicit algebraic subgrid stress model (EASSM), which
is a nonlinear mixed model (Marstorp et al., 2009), gives
LES predictions that are more accurate and less resolu-
tion dependent. The EASSM is derived from the mod-
eled transport equations of the SGS stress anisotropy. The
model has been shown to improve LES predictions of ro-
tating and non-rotating turbulent channel flow at various
Reynolds numbers and different axes of rotation, especially
at coarse resolutions, over the commonly used isotropic
dynamic Smagorinsky model (Rasam et al., 2011, 2012,
2013). In this study we will extend our investigation of the
performance of the EASSM to the LES of more complex
flows. For this purpose, LES of turbulent flow over a peri-
odic hill (see e.g. Frohlich et al., 2005; Breuer et al., 2009;
Manhart et al., 2011) will be carried out using the EASSM
and the results will be compared to those of the highly re-
solved LES of Frohlich et al. (2005).

In LES of flows in complex geometries low-order nu-
merical methods are often used and the numerical dis-
cretization schemes that are usually employed have in-
herent numerical dissipation, due to the truncation errors,
which is often of the same order as the SGS force (see e.g.
Chow & Moin, 2003). Therefore, contrary to our previous
studies (Marstorp et al., 2009; Rasam et al., 2011, 2012,
2013), where an accurate pseudo-spectral Navier–Stokes
solver was employed, in this study we use a finite volume
solver which has a second-order spatial accuracy and inher-
ent numerical dissipation. We test the performance of the
EASSM in a simple case, which is an essential step before
we apply it to more complex geometries. To quantify the
effect of the numerical dissipation on the performance of
the SGS models, LES results with no SGS model are also
presented for comparison. As the first step, LES of channel
flow at Reτ = 590 using the EASSM and the code Saturne
is presented in this paper, where the bulk Reynolds number
is similar to that of the periodic-hill case (Frohlich et al.,
2005). The LES results for the periodic-hill case will be
presented at the conference.
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Explicit algebraic subgrid stress model
(EASSM)

The EASSM has the following formulation for the SGS
stresses, τi j,

τi j =
2
3

KSGSδi j +β1KSGSS̃∗i j +β4KSGS(S̃∗ikΩ̃∗
k j − Ω̃∗

ik S̃∗k j) ,

which consists of an eddy viscosity (second term on the
right-hand side) and a nonlinear term (third term). In this
formulation, .̃ denotes a grid-filtered quantity, S̃∗i j and Ω̃∗

i j
are the resolved normalized strain- and rotation-rate tensors

S̃∗i j =
τ∗

2

(
∂ ũi
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∂ ũ j
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)
, Ω̃∗

i j =
τ∗
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(
∂ ũi
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− ∂ ũ j
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,

where τ∗ is the time scale of the SGS motions. β1 and β4
are coefficients that determine the relative contribution of
the eddy viscosity and the nonlinear terms and are given by

β4 =−33
20

1[
(9c1/4)2 + |Ω̃∗

i j|2
] , β1 =

9
4

c1β4,

The present EASSM uses Yoshizawa’s model (Yoshizawa,
1986) for KSGS

KSGS = c∆2|S̃i j|2 ,

where ∆ = 3
√

Ω (Ω is the volume of a computational cell)
and c is dynamically determined using the Germano iden-
tity (Moin et al., 1991) with local averaging over the neigh-
boring cells and is given as

c =
1
2

̂̃ukũk − ̂̃uk
̂̃uk

∆̂2|̂̃Si j|2 − ̂∆2|S̃i j|2

where .̂ represents the test filter which is a top-hat filter (lo-
cal averaging over the cells sharing a common face) with a
length scale, ∆̂ = 3∆. The model parameter c1 is determined
from the dynamic coefficient c and the SGS time scale, τ∗,
is modeled using the inverse shear

c1 = c′1
√

c′3
c1.25

(2Cs)2.5 , τ∗ = c′3
1.5C1.5

k
√

c
2Cs

|S̃i j|−1

where c′1 = 4.2, c′3 = 2.4, Ck = 1.6 is the Kolmogorov con-
stant and Cs = 0.1, see Marstorp et al. (2009) for details.
In the LES using the pseudo-spectral method the grid fil-
ter is ∆ = 3

√
Ω , where Ω is the volume of a computational

cell. Test filtering is performed using a sharp cutoff filter in
the homogeneous directions in the Fourier space at a filter
width ∆̂ = 2∆.

Numerical method
Two numerical methods are used for the simula-

tions. Code Saturne (www.code-saturne.org) has

Table 1. Summary of the channel flow simulations.
EASSM/PS and EASSM/SAT: Explicit algebraic
SGS stress model with pseudo-spectral method and
code Saturne, respectively; DSM: Dynamic Smagorinsky
model; NM: No SGS model.

Case
SGS

∆+
x ∆+

z
∆+

y Reτ
model (min ∼ max)

1

EASSM/SAT 55 28 0.69 ∼ 15.9 566

EASSM/PS 58 29 0.71 ∼ 28.9 592

DSM 50 25 0.60 ∼ 13.8 506

NM 56 28 0.68 ∼ 15.7 571

2

EASSM/SAT 38 19 0.70 ∼ 16.2 582

EASSM/PS 38 19 0.31 ∼ 19.2 586

DSM 35 17 0.61 ∼ 15.0 531

NM 39 19 0.71 ∼ 16.4 591

been used for most of the LESs performed in this pa-
per. It is an unstructured collocated finite volume solver
for incompressible flows (Archambeau et al., 2004), devel-
oped by Électricité de France (EDF), and has been em-
ployed extensively for simulations of industrial and aca-
demic flows (Revell et al., 2006; Aounallah et al., 2007;
Monfort et al., 2010; Afgan et al., 2011; Dehoux et al.,
2012). It uses a SIMPLEC algorithm for pressure-velocity
coupling, which requires Rhie and Chow (Rhie & Chow,
1983) interpolation to avoid odd-even oscillations. The
code uses a second-order central differencing in space and
a second-order Crank–Nicholson scheme in time.

LES results for the EASSM are obtained both us-
ing the Code Saturne (www.code-saturne.org) and
a pseudo-spectral method. The pseudo-spectral method
which is used here (Chevalier et al., 2007) employs Fourier
representation in wall-parallel directions (x and z), us-
ing periodic boundary conditions, and Chebyshev rep-
resentation in the wall-normal direction (y), using the
Chebyshev–tau method. Aliasing errors are removed us-
ing the 3/2-rule (Hussaini & Zang, 1987). The time inte-
gration is carried out using a four-step third-order Runge–
Kutta scheme for the nonlinear terms and a second-order
Crank–Nicholson scheme for the linear terms.

Channel flow simulations at Reτ = 590
Simulations are carried out at two resolutions, see ta-

ble 1. The table also shows the acronyms that are used here.
For the finite volume simulations an algebraic grid using
a tangent-hyperbolic distribution in the wall-normal direc-
tion is used. For the simulations using the pseudo-spectral
method roots of the Chebyshev polynomials represent the
grid-point distribution in the wall-normal direction. The
flow domain is a rectangular box with 2πδ in the stream-
wise and πδ in the spanwise directions, where δ is the chan-
nel half height. LES results using the EASSM are compared
to the DNS results of Rasam et al. (2013), which are similar
to those of Moser et al. (1999), and the LES results using
the dynamic Smagorinsky model (DSM) (Germano et al.,
1991; Lilly, 1992).

Figure 1 shows the mean velocity profiles in wall units.
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Figure 1. Mean velocity profiles in wall units. Different
resolutions are shifted in the ordinate direction for the clar-
ity of the plot and the upper curves are for a higher res-
olution. Red dots: DNS; Blue solid line: EASSM/SAT;
Green solid line: EASSM/PS; Black solid line: DSM; Black
dashed lines: NM. For the list of acronyms, see the caption
of table 1.

Note that different resolutions are separated by a shift in the
ordinate direction. The figure shows that the DSM largely
under-predicts the wall shear stress, therefore the mean ve-
locity profile is over-predicted by this model at both res-
olutions. At the coarser resolution (case 1), LES without
a SGS model (NM) also over-predicts the mean velocity
profile showing that the discretization errors are larger than
the true SGS dissipation. This is due to the low-order dis-
cretization scheme used in the code. The over-prediction
of NM reduces with increasing resolution, which is due to
the decrease in the discretization error with increasing res-
olution. The EASSM predictions are close to the NM re-
sults, which shows that the model contribution to the SGS
dissipation is low. The EASSM/SAT prediction approaches
that of the DNS with increasing resolution. The EASSM/PS
results are accurate at both resolutions and is close to the
EASSM/SAT at the finer resolution.

The streamwise Reynolds stresses, Ruu, at the two reso-
lutions are shown in figures 2(a-b). The EASSM predictions
represent the resolved plus modeled Reynolds stresses,
while for the DSM the modeled part is not available. At
the coarser resolution, all models (except the EASSM/PS)
and the NM using the code Saturne largely over-predict the
near-wall peak of Ruu, see figure 2(a-b). The EASSM/SAT
prediction is slightly better than those of the DSM and the
NM. All model predictions approach that of the DNS with
increasing resolution and the EASSM/SAT prediction is
more accurate than the DSM and the NM. The EASSM/PS
predictions agree well with the DNS and are better than
those of the EASSM/SAT. It is worth mentioning that the re-
sults from the pseudo-spectral method and the code Saturne
cannot be compared quantitatively at the same grid resolu-
tions, since they have different numerical accuracy, which
affects the overal performance of the EASSM and are pre-
sented here for more information.

The wall-normal Reynolds stresses, Rvv, are shown in
figures 3(a-b). At the coarser resolution, see figure 3 (a),
all the models and the NM using the code Saturne under-
predict Rvv. The DSM prediction at this resolution shows a
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Figure 2. Streamwise Reynolds stresses in wall units; a)
coarse resolution (Case 1) b) Fine resolution (case 2). Refer
to the caption of figure 1 for the legends.

much larger under-prediction than the EASSM/SAT and the
NM and the EASSM/SAT and the NM predictions are sim-
ilar. Model predictions approach that of the DNS with in-
creasing resolution. The EASSM/SAT prediction is slightly
better than the other model predictions, see figure 3(b). The
EASSM/PS prediction is close to that of the DNS at both
resolutions. The spanwise Reynolds stresses, Rww, at the
two resolutions are shown in figures 4(a-b). The perfor-
mances of the models are similar to that for the Rvv predic-
tions.

Conclusions and outlook
We performed LES of channel flow at Reτ =

590 using the explicit algebraic subgrid scale model
(EASSM) (Marstorp et al., 2009). Code saturne which is
a finite volume unstructured Navier–Stokes solver suitable
for LES of complex geometries, was employed in the sim-
ulations. LES results showed that the EASSM predictions
agree reasonably well with the DNS data at fine resolutions.
Comparison of the results with the dynamic Smagorinsky
model (DSM) for the prediction of the wall shear stress
showed that the DSM largely under-predicts the wall shear
even at the fine resolution, while the EASSM prediction
was close to the DNS results. It was found that when the
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Figure 3. Cross stream Reynolds stresses in wall units; a)
coarse resolution (Case 1) b) Fine resolution (case 2). Refer
to the caption of figure 1 for the legends.

EASSM was used with the code Saturne, which has inher-
ent numerical dissipation, its prediction of the SGS dissi-
pation was smaller than when it was used with a pseudo-
spectral solver without numerical dissipation, which is a
useful characteristic of the model.

In the next step towards the application of the EASSM
to more complex flows, we are performing LES of peri-
odic hill (Frohlich et al., 2005) using the EASSM and the
Code saturne. The bulk Reynolds number in this flow
based on the hill height is similar to the bulk Reynolds num-
ber considered in the channel flow simulations. The results
will be presented at the conference.
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Figure 4. Spanwise Reynolds stresses in wall units; a)
coarse resolution (Case 1) b) Fine resolution (case 2). Refer
to the caption of figure 1 for the legends.
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