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Abstract
The effect of active control imposed at the wall on op-

timal structures in wall turbulence is investigated by using a
linear transient growth model. When the detection plane of
the control is located in the buffer layer, the transient growth
of the near-wall structures can be suppressed, but the large
scale motion can hardly be influenced as the Reynolds num-
ber increases, even when the control amplitude is enhanced.
When the input signal for the control is detected in the loga-
rithm region, the transient growth of the large-scale motions
can be greatly suppressed, although a new peak occurs in the
transient growth rate due to the strong blowing and suction at
the wall. The results indicate that the flow information in the
logarithmic region is crucial for constructing a control scheme
to effectively manipulate the large-scale motions.

Introduction
Coherent structures are closely related to the generation

of high skin friction in wall-bounded turbulent flows (Robin-
son, 1991; Kravchenko et al., 1993). Therefore, a great many
studies (Choi et al., 1994; Collis et al., 2004) have focused on
the dynamics of the coherent structures for the purpose of tur-
bulence control over the past decades. Besides the typical co-
herent structures in buffer layer, such as the low-speed streaks
and the quasi-streamwise vortices which also exists in low-
Reynolds number wall turbulence, large scale motions with
characteristic spanwise and streamwise scales of λz ≈ O(h)
and λx ≈ O(10h) (Tomkins & Adrian, 2003; Gnanpathisubra-
mani et al., 2005; del Alamo & Jimenez, 2003) occupy the
logarithmic region in high Reynolds number wall-bounded
turbulent flows (Adrian et al., 2000; Abe et al., 2004; Hoyas
& Jimenez, 2006). As the Reynolds number increases, the
large scale structures carry a more significant fraction of the
Reynolds stress (Hoyas & Jimenez, 2006), and play a more
important role in turbulence production and skin friction gen-
eration. Therefore the effective manipulation of the large scale
structures is crucial for a successful control of high-Reynolds
number wall-bounded turbulent flows.

The linear theory for flow instability is an useful tool
for the study of coherent structures (del Alamo & Jimenez,
2006). Investigation of the linearized N-S equations yields

that the stable disturbance on laminar flow can undergo tran-
sient growth before its exponential decaying. This can be at-
tributed to the non-orthogonality of the eigenfunctions of the
Orr-Sommerfeld and the Squire equations. Due to the non-
orthogonality, different stable modes can interact with each
other to achieve a transient growth in a short time period. In
the case of the laminar channel flow, the optimal initial per-
turbations are uniform streamwise vortices, and the optimally
amplified structures are streaks (Butler & Farrell, 1992). The
streaks resulting from the transient growth of perturbations
is produced by the lift-up effect of the streamwise vortices.
Since the mean turbulent velocity profile in channel flow is
linearly stable, the transient growth mechanism is crucial for
the generation of the flow structures. Butler & Farrell (1993)
found that the optimal structures were also streamwise vor-
tices and streaks in turbulent cases, and the spanwise spacing
between the streaks were λz = 3h. They also attained the op-
timal structures with spacing of λ+

z ≈ 100 by constraining the
transient growth time to the eddy turnover time in the near-
wall region. Recently, del Alamo & Jimenez (2006) and Pu-
jals et al. (2009) considered the nonlinear influence of turbu-
lent fluctuations by replacing the molecular viscosity by the
total viscosity in the formulation of the governing equations
for the linear perturbations, and obtained the optimal struc-
tures with both spanwise spacing of λ+

z ≈ 100 and λz = 4h
without constraining the transient growth time. The previous
works show that the linear transient growth model can capture
the main characteristics of the flow structures in the fully de-
veloped turbulence. In a turbulent flow environment, the op-
timal structures are the most probable structures to grow and
survive. Furthermore, Lim & Kim (2004) studied the transient
growth of turbulent channel flow in the presence of the oppo-
sition control based on the same model as that used by Butler
& Farrell (1993). They obtained a similar conclusion as that
by direct numerical simulation: if the detection plane was lo-
cated near enough to the wall, the transient growth rate under
the control was smaller than that without control, whereas, if
the detection plane was located farther away from the wall, the
transient growth rate became larger than that without control.
In Lim & Kim (2004)’s work, the Reynolds numbers were
limited to be less than Reτ = 400 and only the near-wall struc-
tures were considered by limiting the transient growth time.
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Therefore, the main purpose of the present work is to inves-
tigate the influence of the active control on flow structures at
high Reynolds numbers, especially the large scale structures
in the logarithmic region, by using the linear transient growth
model proposed by Pujals et al. (2009).

Computation Model
In the present work, the mean velocity profile of tur-

bulent channel flow is employed as the base flow, i.e., U =
(U(y),0,0). By writing the perturbation velocity u into the
form of u = û(α ,β ,y, t)exp{i(αx+β z)}, where α and β are
the streamwise and spanwise wave numbers, respectively, the
linearized equations for the perturbations proposed by Pujals
et al. (2009) are

[
D2 − k2 0

0 1

]
∂
∂ t

[
v̂

ω̂y

]
=

[
Los 0

−iβ DU+

Dη Lsq

][
v̂

ω̂y

]
, (1)

with

Los = −iα [U+(D2 − k2)− D2U+

Dη2 ]

+ 1
Reτ

{νT
+(D2 − k2)2 +2 ∂νT

+

∂η (D3 − k2D)+

∂ 2νT
+

∂η2 (D2 + k2)},

(2)

Lsq = −iαU+ +
1

Reτ
(iανT

+(D2 − k2)+
∂νT

+

∂η
D), (3)

where D stands for ∂/∂η , and k2 = α2 +β 2. The dimension-
less parameters are defined as η = y/h, U+ = U/uτ , where h
is the half height of the channel and uτ is the friction velocity.
νT (y) is given by the Cess expression

ν+
T (η) =

1
2
{1+

κ2Re2
τ

9
(1−η2)2(1+2η2)2

×{1− exp[(|η |−1)Reτ/B]}2}1/2 +
1
2
. (4)

The constants κ and B in equation (4) are chosen to be 0.426
and 25.4, respectively, which have been confirmed by Pujals
et al. (2009). The base flow can be computed according to
dU+(η)/dη = −Reτ η/ν+

T (η). The boundary conditions are
specified at the wall as

v̂wall = 0,
∂ v̂
∂η

|wall = 0 (5)

for the no control case. In the case of the opposition con-
trol, the blowing and suction on the wall are considered by the
boundary condition as

v̂wall = −v̂(yd),
∂ v̂
∂η

|wall = 0. (6)

The transient growth rate G(t,α,β ) is defined as :

G(t,α,β ) = sup
E(0,α,β )̸=0

E(t,α,β )

E(0,α ,β )
(7)

where E(t,α,β ) is the kinetic energy of the perturbations at
time t and E(0,α,β ) is the energy at t = 0. The maximum
transient growth rate is the maximum value of G(t,α,β ) in
the entire time range,

Gmax(α ,β ) = max
t≥0

G(t,α,β ). (8)

The initial perturbation which leads to Gmax is referred to as
the optimal structures.

The equations are discretized by a Chebyshev colloca-
tion method, and the maximum transient energy growth is
computed by the method introduced in Schmid & Henning-
son (2001). According to the previous studies by Pujals et al.
(2009), the numbers of collocation points used in the present
study are in the range of 129 ∼ 800 for the Reynolds number
Reτ = 500 ∼ 20000. It is verified that the energy transient
growth for the no control cases obtained in the present study
is consistent with the results of Pujals et al. (2009).

Results and analysis
First the no control case at Reτ = 1000 is considered.

Figure 1(a) and figure 2 show the maximum energy transient
growth rates Gmax and the optimal structures. The results are
consistent with Pujals et al. (2009)’s : the maximum tran-
sient growth rate exists in the range of α < β , and shows two
peaks. The value of the outer peak, corresponding to a stream-
wise uniform structure with spanwise wavelength of λz ≈ 4h,
is about 10.5. The inner peak, corresponding to λ+

z ≈ 100,
takes the value of 3. The spanwise length scales correspond-
ing to the outer and inner peaks are respectively consistent
with the large scale motions in the logarithmic region and the
near-wall coherent structures in turbulent channel flow. The
transient growth process of the outer peak is as the follow-
ing: the counter-rotating streamwise vortices with their cen-
ters located at the center of the channel capture energy from
the mean flow and forms the streaks that penetrate into the
near-wall region, as shown in figure 2(a). The process of the
inner peak is similar as that of the outer peak except that the
centers of the initial streamwise vortices are located at around
y+ = 15 and the maximum value of the amplified streaks are
reached at y+ = 10, as shown in 2(b).

Figure 1(b) shows the contours of Gmax for the case of
y+

d = 15 control at Reτ = 1000. In this control case, the in-
ner peak is obviously diminished, and only the outer peak re-
mains with unchanged location in the (α,β ) plane. The opti-
mal structures at the outer peak under the control is very close
to the uncontrolled. Since the inner peak is relevant with the
near-wall rolls and streaks, this result also indicates that the
opposition control with y+

d = 15, which is considered to be
the optimal detection location in terms of the maximum drag
reduction rate, is very effective in suppressing the growth of
the near-wall structures. This is consistent with the results
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Figure 1. Contours of Gmax for the (a) no control and (b)
y+

d = 15 control cases at Reτ = 1000. Contour levels start
from 1.0 with an increment of 0.5.
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Figure 2. Vectors for optimal initial velocity field and con-
tours for amplified streamwise velocity at the (a) outer peak
and (b) inner peak in the no control case. The dashed line
indicates negative streamwise velocity and the solid line rep-
resents positive streamwise velocity.

obtained in the direct numerical simulation of turbulent chan-
nel flow by Choi et al. (1994), although the present Reynolds
number is much higher that that used by Choi et al. (1994).
Notably, the control cannot clear off all the near-wall struc-
tures in real turbulent flow, while in the present linear model
the inner peak of the transient growth vanishes completely un-
der the control because of the neglecting of the nonlinear in-
teraction between different scales. At Reτ = 1000, the control
with y+

d = 15 only has trivial influence on the outer peak or
the large scale structures.

The Reynolds number effect on the y+
d = 15 control is

further considered. Because the peak value of the maximum
transient growth is only reached at α = 0 for both the no con-
trol and the y+

d = 15 control cases, therefore only the Gmax for
the streamwise uniform structures is shown in figure 3. For
the no control cases as indicated by the solid lines in the fig-
ure, the outer peak and inner peak characteristics are the same
as those in the work of Pujals et al. (2009)’s : the outer peak
is located around βh = 1.5 and the peak value increases with
the Reynolds number, while the inner peak exists at λ+

z ≈ 90
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Figure 3. Distribution of Gmax as a function of β for α = 0
at Reτ = 1000 ∼ 20000 in the cases of no control and y+

d = 15
control. (a) in wall unit ν/uτ and (b) in outer length scale h.

and the peak value is independent of the Reynolds number, as
shown in figure 3(a) and (b), respectively. The results for the
y+

d = 15 control are shown by the dashed lines in 3. The outer
peaks for the Reynolds numbers between 500 and 20000 are
all located at βh = 1.5. However, the suppression of the peak
values due to the control decreases as the Reynolds number in-
creases. The outer peak value is almost unchanged provided
Reτ > 2000. Because the detection location is measured in
wall units and y+

d = 15 is located in the buffer layer, the verti-
cal height corresponding to y+

d = 15 sharply decreases from
0.03h to 0.00075h as the Reynolds number increases from
500 to 20000. Moreover, the structures corresponding to the
outer peaks are mainly located in the logarithm region, which
is completely separated from the buffer layer at large enough
Reynolds numbers. Therefore, the control limited in the near-
wall region has less effect on the outer peak as the Reynolds
number increases. Additionally, the optimal structures at the
outer peak (not shown here) under the control only deviate
from those of the no control cases very little. This agrees with
the results of O.Flores & del Alamo (2007) that the roughness
of the wall does not affect the existence and distribution of
vortex clusters in the outer region, which can be considered as
the large scale motions. The inner peaks for all the Reynolds
numbers are suppressed by the control. As shown in the work
of Pujals et al. (2009) and figure 2(b), the vertical velocity
of the structures corresponding to the inner peak reaches the
maximum value around y+

d = 15, so the control with y+
d = 15

can take significant effect.
The time at which the maximum transient growth is

reached, Tmax, is shown in figure 4 for different spanwise
wavelength scaled in wall units. The y+

d = 15 control ob-
viously diminishes the time of the transient growth around
λ+

z = 100, which is consistent with the location of the inner
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Figure 4. Variations of Tmax as a function of λ+
z at α = 0 for

Reτ = 500 ∼ 20000. Solid lines represent the no control cases
and dashed lines stand for the y+

d = 15 control cases.
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Figure 5. Distribution of Gmax as a function of β for α = 0 at
Reτ = 1000 ∼ 20000. (a) y+

d = 30 control, in wall unit ν/uτ ;
(b) yd = 0.1h control, in outer length scale h.

peak in Gmax. Beyond λ+
z = 100, the difference in the time

between the no control and the y+
d = 15 control decreases as

the spanwise wavelength increases. The control almost has
no influence on the transient growth time at large scales when
λ+

z > 1000. This confirms the results that the y+
d = 15 control

can suppress the inner peak and the near-wall structures, but
has little effect on the outer peak and the large scale motions.

To test the influence of the detection location on the flow
structures, two higher detection planes are chosen at y+ = 30
and y = 0.1h, which are the top of the buffer layer and in the
the logarithm region, respectively. As shown in figure 5(a),
the locations of outer peaks of maximum transient growth un-
der y+

d = 30 control are unchanged. Similar to the cases of
y+

d = 15 control, the difference of the outer peak values be-
tween the no control case and the controlled case decreases
as the Reynolds number increases. However, the outer peak
values under y+

d = 30 are suppressed more than that y+
d = 15

λz
+

t+

102 103 104 105
100

101

102

103

104

(a)

λz/h

tu
τ/h

10-3 10-2 10-1 100 101

10-4

10-3

10-2

10-1

100 (b)

Figure 6. Variations of Tmax as a function of λz for α = 0
at Reτ = 500 ∼ 20000. (a) y+

d = 30, λz is scaled in wall units
ν/uτ ; (b) yd = 0.1h, λz is scaled in h. Solid lines represent the
no control cases and dashed lines stand for the control cases.

control for Reτ < 5000, indicating that with the elevation of
the detection plane, the influence of the control on large scale
motion becomes more obvious. For example, the outer peak
value at Reτ = 500 under y+

d = 15 control and y+
d = 30 control

are 9 and 7, respectively. Notably, the influence of y+
d = 30

control is also insignificant for even larger Reynolds number.
The diminishing of the inner peak by the y+

d = 30 control is
less effective than by the y+

d = 15 control. The inner peaks
locating at λ+

z ≈ 92 in the no control cases moves to λ+
z ≈ 50

for all the Reynolds numbers in the y+
d = 30 control cases. The

time to reach the maximum transient growth under y+
d = 30

control is shown in figure 6(a). Compared with the y+
d = 15

control, the influence of the y+
d = 30 control on Tmax covers

a larger spanwise wavelength range but is still limited in the
small-scale structures. Therefore, the control restricted in the
buffer layer, such as y+

d = 15 and y+
d = 30 control, has lim-

ited influence on the large scale structures, especially at high
Reynolds numbers, but can obviously suppress the near-wall
scale structures.

When the detection plane is located in the logarithm re-
gion, the influence of the control on large scale structures is
much more obvious. As shown in figure 5(b), although the
outer peak locations under yd = 0.1h control are the same
as the case of no control, the values of the outer peaks are
much smaller. Moreover, different from the control with de-
tection plane located in the buffer layer, the suppression of
the outer peak is independent of the Reynolds number. The
reason lies in that the detection location is scaled in outer
length scale h. The transient growth process under the con-
trol is still that the amplified streaks capture energy from the
initial vortices. The distributions of the optimal initial verti-
cal velocity and the amplified streamwise velocity are shown
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Figure 7. Distributions of (a) optimal initial vertical veloc-
ity, (b) amplified streamwise velocity for no-slip case (solid
line) and yd = 0.1h control (dashed line) for αh = 0, βh = 1.5
at Reτ = 1000 ∼ 5000.

in figure 7(a) and (b), respectively, for the no control and the
yd = 0.1h control cases. The optimal initial vertical velocity
for different Reynolds numbers collapses into one curve under
yd = 0.1h control, which means the controlled optimal initial
structures are similar. Compared with the no control case, the
controlled optimal initial vertical velocity is suppressed in a
large range in the vertical direction. This may lead to the de-
crease of Gmax, because the energy of the amplified streaks
is captured from the mean flow through the initial vortices.
Since the term −iβ v̂DU/Dη causes the non-normality of the
linearized equations for the perturbations and leads to the tran-
sient growth, the decrease of vertical velocity below y = 0.3h
can make the location of maximum −iβ v̂DU/Dη move away
from the wall. Therefore, the location of the amplified streaks
may be shifted away from the wall. Additionally, due to the
similarity of the initial vortices, the distribution of the ampli-
fied streaks for all the Reynolds numbers considered in the
present work should be also similar. This has been confirmed
by figure 7(b). The location of the maximum streamwise
velocity is shifted from y = 0.1h in the no control cases to
y = 0.4h under the yd = 0.1h control for all the Reynolds num-
bers considered, and different from the no control cases, the
streaks do not penetrate into the near-wall region. As shown
in figure 6(b), under yd = 0.1h control the time to reach the
maximum transient growth at the spanwise wavelength of the
outer peak is only a little bit smaller than the no control case.
The almost identical time but obviously smaller peak value for
the transient growth under yd = 0.1h control indicates that the
suppression of the outer peak is effective.

Although the yd = 0.1h control can greatly suppress the
original outer large scale motions, it also produces a new peak
in Gmax around βh ≈ 19, where the transient growth rate is
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Figure 8. vectors for optimal initial velocity filed and con-
tours for amplified streamwise velocity at controlled new peak
for (a) no control case and (b) yd = 0.1h control. The dashed
line indicates negative streamwise velocity and solid line rep-
resents positive streamwise velocity.

small in the no control cases, as shown in figure 5(b). The
initial optimal vectors and amplified streaks for the no control
case and yd = 0.1h control at βh ≈ 19 are shown in figures
8(a) and (b), respectively. The control pushes up the bottom of
the initial vortices to y = 0.035h, below which there are semi-
vortices induced by the opposition control. Hence, the loca-
tion of the initial vortices under yd = 0.1h control is higher
than that in the no control case. Different from the no control
case, there are two vortex cores in the vertical direction above
y = 0.035h. Moreover, it is significant that the locations of the
most amplified streaks are changed by the control. In the no
control case, the amplified streaks are extended to y = 0.1h,
although it deeply penetrates into the near-wall region. How-
ever, under yd = 0.1h control, the streaks are most amplified
in the region below y = 0.035h which is dominated by the op-
position control, and the amplification of the initial vortices is
suppressed. Notably, the vertical velocity around y = 0.1h is
large for both the no control and the control cases, and hence
the vertical velocity on the wall is also of large amplitude.
Consequently, the term −iβ v̂DU/Dη is also significant near
the wall, resulting in the great transient growth of the pertur-
bations there. We also tested the control with the even higher
detection locations above the center of the logarithm region,
such as yd = 0.2h, and found it resulted in the computational
instability. Therefore, to suppress the large scale motion the
detection location should be scaled in h and should be in the
lower part of the logarithm region.

Because the amplitudes of the blowing/suction velocity
at the wall in yd = 0.1h control are larger than that in the
y+

d = 15 and 30 controls, and the yd = 0.1h control are much
more effective in suppressing the large scale motion than
the y+

d = 15 and 30 controls. It should be clarified whether
the amplitude or the phase of the control is crucial for the
suppression of the large scale motion. Hence, the y+

d = 15
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Figure 9. Distribution of Gmax as a function of β at α = 0
and Reτ = 1000 for the cases of no control and strengthened
y+

d = 15 controls with A = 1,2,5,8.

controls with strengthened control amplitude are checked at
Reτ = 1000. In this case, the wall blowing/suction velocity
is determined by v̂wall = −Av̂(yd), in which A is the ampli-
tude parameter. The transient growth rates in the cases of the
strengthened control with A = 1,2,5,8 are shown in figure 9.
The location as well as the value of the outer peak changes
very little by the strengthened control in comparison with the
no control case. For other Reynolds numbers, the results are
also similar. This suggests that the control with input signal
detected in the buffer layer, even with an increased amplitude,
can hardly affect the large scale motion, indicating that the
detection location is a crucial factor to achieve effective ma-
nipulation of the large scale motions.

Summary
The linear transient growth model is employed to study

the effect of active control on flow structures in wall turbu-
lence. The control with y+

d = 15 can significantly suppress
the transient growth of the near-wall structures, but the control
with the detection plane located in the buffer layer has very
limited influence on the large scale motions, even the control
amplitude is increased. Taking the information at y + 0.1h in
the logarithm region as the input signal, the control is very ef-
fective in suppressing the large scale motions corresponding
to the outer peak in the maximum transient growth rate. With
this high detection location, new peak occurs in the transient
growth rate, caused by the strong manipulation on the wall.
The energy amplification of the optimal initial structures fur-
ther away from the wall is still suppressed. These results sug-
gest that the effect of the control on the large scale motion
mainly depends on the detection location.
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