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ABSTRACT
The direct numerical simulation of the turbulent mix-

ing layer with periodically-forced inflow is performed. The
angular frequency Ωc was set as a control parameter. To
compare the experimental study of Naka et al. (2010), the
angular frequency is set to be Ω = 0.83 (Case A) and 3.85
(Case B). In the present simulation, the momentum thick-
ness shows the Case A achieved the mixing enhancement,
while Case B achieves its suppression. Due to the both con-
trols, the Reynolds normal shear stress, especially v′v′ in-
creases behind the periodic forcing. The Reynolds shear
stress u′v′ is suppressed in the Case B at downstream. This
region is agree with that the mixing suppression is found in
the momentum thickness. Furthermore, the anisotropic ten-
sor indicates that two dimensional large coherent structure
is generated in the Case B in which mixing was suppressed.

Introduction
A mixing layer is one of the fundamental free shear

flow generated by the velocity gap (Brown & Roshko
(2009)). In order to understand the vortex dynamics in
shear flows, mixing layers have extensively been studied
since Brown & Roshko (1974) experimentally visualized
the coherent structure in turbulent mixing layers. Huang &
Ho (1990) experimentally studied an acoustically perturbed
laminar mixing layer and observed small-scale turbulence
created due to interaction of spanwise and streamwise struc-
tures after the merging of spanwise vortices.

Turbulent mixing layers can be found in various prac-
tical applications: e.g., inside combustion chambers and
around the exhaust of turbo engines. Techniques for mixing
enhancement or suppression are sometimes needed for effi-
cient combustion or noise reduction. Ho (1982) attempted
to control the mixing layer by perturbing the flow rates of
inflows. They show that the spreading rate of a mixing layer
can be manipulated at very low forcing level if the mixing
layer is perturbed near a subharmonic of the most-amplified
frequency. Naka et al. (2010) studied a mixing layer peri-
odically forced by using a flap-type actuator made of piezo-

plastic (Polyvinylidene fluoride: PVDF) film aiming at both
enhancement and suppression of mixing. They conclude
that at some parameters of forcing mixing suppression can
also be achieved.

In the present study, direct numerical simulation (DNS)
of turbulent mixing layers with periodic forcing, which
mimics that by the flap-type actuator of Naka et al. (2010),
is performed. The forcing by the flap-type actuator is mod-
eled by transversely oscillating the inflow turbulent bound-
ary layers.

Direct numerical simulation
The governing equations are the incompressible conti-

nuity and Navier-Stokes equations as following,

∂ui

∂xi
= 0, (1)

∂ui

∂ t
= −∂uiu j

∂ x j
− ∂ p

∂xi
+

1
Re

∂ 2ui

∂x j∂x j
, (2)

where xi (i = 1, 2, 3) are the Cartesian coordinates ui are the
corresponding velocity components. All variables are non-
dimensionalized by the free-stream velocity, 99% boundary
layer thickness of the induced turbulent boundary layer in
the low-speed side, denoted as UL and δ , respectively. The
inlet profiles of velocities are prepared by performing DNS
of turbulent boundary layer (Kametani & Fukagata, 2011)
in advance, in which the recycle method uses (Lund et al.,
1998). The DNS code is based on a channel flow code de-
veloped by Fukagata et al. (2006). The spatial discretiza-
tion uses the energy-conservative second-order finite differ-
ence scheme (e.g., Ham et al. (2002)). The time integra-
tion uses the low-storage third-order Runge-Kutta/Crank-
Nicolson scheme (e.g., Spalart et al. (1991)). The free-
steam velocity in high speed-side is twice faster than that
in low speed-side. The convective boundary condition is
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Figure 1. Computational domain

applied at the outlet of the computational domain as

∂ui

∂ t
+Uc

∂ui

∂x
= 0, (3)

where Uc denotes the average of free-stream velocities in
the high-speed side and low-speed side, viz., Uc = 1.5. The
pressures at the inlet and outlet boundaries are given by the
Navier-Stokes characteristic boundary condition (NSCBC)
of Miyauchi et al. (1996),

∂ p
∂ t

+Uc
∂ p
∂x

=
1

2Re
ω2

z , (4)

where ωz denotes the spanwise vorticity. It is known that
this boundary condition considerably suppresses the un-
physical pressure near the inlet and outlet that appears when
an ordinary Neumann condition is used.

The computational domain consists of 0 ≤ x ≤ 3π in
the streamwise direction, −10 ≤ y ≤ 10 in the vertical di-
rection, and 0 ≤ z ≤ π in the spanwise direction, respec-
tively. The correspond grid numbers are (Nx,Ny,Nz) =
(128,224,128). The grid spacings in the streamwise and
spanwise directions are ∆x = 7.36×10−2 and ∆z = 2.45×
10−2, respectively. The minimum grid spacing in the trans-
verse direction is ∆y = 0.3 ×10−2 and the maximum spac-
ing is ∆y = 0.41.

To prepare the inflow velocity profiles, the DNS of
turbulent boundary layer is performed with different two
Reynolds numbers, corresponding UL and UH . The com-
putational domain for turbulent boundary layer consists of
0 ≤ xD ≤ 3π in the streamwise direction, 0 ≤ yD ≤ 3 in the
vertical direction, and 0 ≤ zD ≤ π in the spanwise direc-
tion, respectively, where superscript D denotes the inflow
driving region. The corresponding numbers of grid points
are (ND

x ,ND
y ,ND

z ) = (128,96,128).
Figure 1 shows the schematic computational domain in

the present study. The inlet flows are assumed to be split by
the thin plate. The friction Reynolds number of the induced
velocity in the low speed side, ReL

τ , is ReL
τ ≈ 160.

Periodic forcing
As mentioned above, the inlet velocity profile consists

of two inlet profiles of turbulent boundary layers. The inlet
profile is periodically oscillated by transforming the coordi-
nate as

y(t) = y−Asin(Ωct), (5)
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Figure 2. The transition of the boundary of inlet velocity
profiles periodically forced.

where A and Ωc denote the forcing amplitude and the angu-
lar frequency as control parameters, respectively. In this
study, owing to mimic the forcing by PVDFs in the ex-
periment of Naka et al. (2010), the amplitude is fixed to
A = 0.14 and the angular frequencies are set to be Ωc = 0.83
and 3.87. The present forcing conditions are listed in Table
1. Figure 2 shows that the time-marching transverse posi-
tion of the boundary of high speed and low speed velocity
profiles. It is confirmed that, the inlet velocity profiles are
periodically oscillated.

Result and Discussion
Vortex structures

The instantaneous flow fields of each case are depicted
by the pressure (gray iso-surface) and the second invari-
ant of velocity-gradient tensor (red iso-surface) in Fig.3.
These iso-surfaces show the vortices and blade region, re-
spectively. In the uncontrolled case, the two-dimensional
spanwise vortices are generated at the inlet and it breaks
down as it flows downstream. It can be seen the turbulent
structures in the blade region where the shear stress is dom-
inant. In the Case A, the spanwise large vortex at the inlet
seems to grow in downstream direction due to the periodic
forcing. With more higher frequency of forcing in Case B,
the spanwise roller structure appears at equal intervals. The
blade region is clarified by the forcing compared to the other
two cases. Although the roller vortices become smaller as
they flow downstream, the roller structure sustains its form.

Statistics
To see the effect of the periodic forcing, the spatial de-

velopment of the turbulent mixing layer is examined with

Table 1. Forcing conditions

Forcing

Case Uncontrolled A B

Angular frequency, Ωc 0 0.83 3.85

Frequency, fc - 0.182 0.615

Wave length, λ - 11.4 2.44

Period, T - 7.58 1.63
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Figure 3. Vortical structures: white, the iso-surface of pressure; red, the iso-surface of second invariant of velocity-gradient
tensor.

the momentum thickness θ and vorticity thickness δω cal-
culated as

θ =
1

∆U2

∫ ∞

−∞
(UH −U(y))(U(y)−UL) dy, (6)

δω =
∆U

∂U/∂y|max
, (7)

where ∆U denotes the gap between free stream velocities in
high-speed side and low-speed side, viz., ∆U = UH −UL.
Figure 4 and 5 depict the momentum thickness and the vor-
ticity thickness in the present simulation with those from
experiment of Naka et al. (2010). Here, θ0 and δω,0 de-
note the most upstream value of uncontrolled case from the
experiment. The momentum thickness develops in down-
stream direction in all cases. Both of the controlled cases
are thicken the momentum thickness compared to the un-
controlled case, although its grow-rate becomes smaller at
downstream in Case B. The momentum thickness of uncon-
trolled case has good agreement with that from the experi-
ment. In the Case A and B, however, there are large differ-
ences between the profile from present simulation and that
from the experiment. Similarly, the vorticity thickness in
the periodically forced cases are not agree with those in the
experiment. As for Case B, the thickness becomes thinner
than uncontrolled case. Although the forcing condition is
exactly equal, the gap is still large in Case A. The differ-
ence in the Reynolds number, the inflow condition or the
numerical boundary conditions might cause these gap be-
tween them. Due to the numerical result, both of momen-
tum and vorticity thickness are increased in the both of Case
A and B. Although vorticity thickness is decreased to less
than that of uncontrolled case after x ≈ 4 in Case B, it is still
unclear wether mixing is suppressed or not because of the
short streamwise computational domain length.

Figure shows the mean streamwise velocity in each
case. It is found that, in the present simulation, the mixing
layer does not achieve fully developed turbulent condition
since the momentum deficit in inlet boundary layer remains
at the downstream end of the computational domain. Other
remarkable difference appears in the gradient of the velocity
near the center which approximately correspond to the vor-
ticity thickness. Compared to that in uncontrolled case and
Case A, the velocity-gradient in the Case B shows the slow
spatial development, while the momentum deficit decreases
faster than the other cases.

Figure and ?? show streamwise and transverse
Reynolds normal stresses, u′u′ and v′v′. It can be seen that

u′u′ is enhanced by the control. It, however, suppressed as
far as x = 1. Comparing the Case A with Case B, u′u′ in the
Case B seems to be more diffused than that in the Case A in
the range of 1 ≤ x ≤ 7. On the other hand, v′v′ is suppressed
in the Case A, while it increases in Case B. It is also found
that v′v′ is drastically enhanced in the region of 0 ≤ x ≤ 6
and −0.5 ≤ y ≤ 0.5 in Case B, while it decreases at the more
downstream region.

The Reynolds shear stress (RSS), u′v′, is depicted in
Fig.9. Compared to uncontrolled case, u′v′ is decreased

Figure 4. The momentum thickness: solid line, present
DNS; markers, experiment of Naka et al. (2010): black,
uncontrolled; red, Case A; blue, Case B.
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Figure 5. The vorticity thickness: solid line, present DNS;
markers, experiment of Naka et al. (2010): black, uncon-
trolled; red, Case A; blue, Case B.
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Figure 6. Mean streamwise velocity: left, Uncontrolled; center, Case A; right, Case B.

Figure 7. Streamwise Reynolds normal stress, u′u′: top,
uncontrolled; middle, Case A; bottom, Case B.

from upstream of the computational domain. The interest-
ing effect of the control appears in the Case B. In the Case
B, it is found that, after u′v′ is enhanced in the range of
0 ≤ x ≤ 3, it is drastically suppressed and diffused in the
range of 3 ≤ x ≤ 7. At more downstream, the RSS seems to
recover again. The reduction of u′v′ means that the corre-
lation between streamwise and transverse turbulence is de-
creased. The region in which the RSS is enhanced agrees
with that in which the development of momentum thickness
is delayed.

To know the figure of the turbulence in the turbulent
mixing layer, the second and third invariant of anisotropy
tensor at downstream of the low speed-side (−10 ≤ y ≤ 0)
are plotted in Fig.10. From the result, the profile of Case A
approaches that of the uncontrolled case. On the other hand,
wider two dimensional region appears in Case B compared
with other cases since the large coherent structure, shown in
Fig. 3, is produced by the control.

vv)

Figure 8. Transverse Reynolds normal stress, v′v′: top,
uncontrolled; middle, Case A; bottom, Case B.

Conclusion
The direct numerical simulation of the turbulent mix-

ing layer with periodically-forced inflow was performed.
The control parameter, nondimensional forcing frequency
Ωc, was set to be 0 (Uncontrolled), 0.83 (Case A) and 3.85
(Case B). From the momentum thickness, the periodic forc-
ing at the inlet enhanced mixing. In the Case B, however,
mixing is suppressed by the control downstream, while mix-
ing is enhanced upstream. The Reynolds shear stress is
suppressed in the same region where the development of
the momentum thickness was suppressed, while the stream-
wise and transverse Reynolds normal stresses are enhanced.
In the present study, the Case A and the Case B achieved
the mixing enhancement and suppression, respectively. But
the agreement between the present simulation and experi-
ment (Naka et al., 2010) was not found due to the defer-
ence in inlet velocity profiles or the short length of com-
putational domain, especially in streamwise direction. In
addition, for more deep analysis of the mechanism of the
mixing enhancement or suppression, the budget of the tur-
bulent kinetic energy should be considered.
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Figure 10. The second and third invariants of anisotropy tensor at x = 6.9: left, uncontrolled case; center, Case A; right, Case
B.

Figure 9. Reynolds shear stress, u′v′: top, uncontrolled
case; middle, Case A; bottom, Case B.
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