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ABSTRACT

A comparison of the optimal control of two- and three-
dimensional plane jets using the continuous and discrete
adjoint of the instationary Navier-Stokes equations was per-
formed. The control aim was to reduce the sound emission
in the near far-field by using a heat source actuation within
the transitioning jet shear layers. The fully compress-
ible Navier-Stokes equations were solved using dispersion-
relation preserving spatial discretization schemes and a low-
dissipation-dispersion Runge-Kutta scheme. The Reynolds
number based on the slot diameter was set to 2000 and the
Mach number to 0.9. Direct numerical as well as large-eddy
simulations in two and three dimensions where performed
to estimate the influence of modelling and resolution on the
results. The results show a slight advantage of using the
discrete adjoint, especially when handling boundary condi-
tions, since the calculation of the gradient of the cost func-
tional is more accurate. It is interesting, too, that the control
efficiency reduces with increasing resolution and therefore
dimension of the control. Reducing it by applying a se-
lected interpolation in the control area shows an increase in
efficiency and sound reduction.

Introduction

Optimal control of flows using the adjoint equations has be-
come a valuable tool in fluid mechanics, with applications
ranging from aerodynamic shape optimization (Kuruvila
et al., 1994; Giles & Pierce, 2000; Brezillon & Gauger,
2004; Giering et al., 2005; Srinath & Mittal, 2010; Zy-
maris et al., 2010; Jameson & Ou, 2011) to sound reduction
in compressible flows (Joslin ez al., 2005; Wei & Freund,
2006; Spagnoli & Airiau, 2008; Freund, 2010; Kim et al.,
2010; Rumpfkeil & Zingg, 2010; Marinc & Foysi, 2012).
The principal task is to minimize a cost functional or ob-
jective (unwanted noise or drag, for example). Differential
equation constraints are additionally imposed, which here
consist of the primal flow equations. The minimization pro-
cedure requires the determination of the gradient of this cost
functional (Gunzburger, 2002). Unfortunately, a finite dif-
ference approach requires () solutions of our primal flow
equations for n different design variables to obtain the gra-
dient, which is impractical. Optimal control based on the
adjoint equations on the other hand is independent of the
number of design parameters. The adjoint may be calcu-
lated using two different routes. One possibility is to derive

the adjoint equations analytically based on the problem de-
scribing partial differential equations (primal), before dis-
cretizing the resulting equations (“first optimize then dis-
cretize” (FOD). Alternatively, the primal flow equations are
discretized first and these already discretized equations are
used to determine the discrete adjoint equations (“first dis-
cretize then optimize” (FDO)). Both routes lead to different
numerical results which are equal only in the limit of in-
finitely small grid and time steps. For a further discussion of
disadvantages and advantages see Gunzburger (2002). For
aeroacoustic sound reduction most authors used the contin-
uous adjoint approach, so far (Joslin et al., 2005; Wei &
Freund, 2006; Spagnoli & Airiau, 2008; Freund, 2010; Kim
et al., 2010; Marinc & Foysi, 2012), making it possible to
adjust or change the discretization or boundary treatment of
the adjoined compared to the primal flow equations. How-
ever, Marinc & Foysi (2012) showed recently, that the gra-
dient direction deviates from the exact gradient direction to-
wards the end of the control horizon for instationary control
simulations (figure 1, normalization was done by the cor-
responding values at the nozzle exit). It’s possible to even
have opposite gradient directions rendering the minimiza-
tion ineffective or even unsuccessful. Among the possible
reasons are inconsistencies due to a different discretization
of the adjoint compared to the primal flow equations, dif-
ferent boundary conditions, additional numerical filtering
for stabilization in critical areas with large gradients or grid
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Figure 1.  Comparison of the gradient direction of the plane jet

using the continuous adjoint (Fy,4;) with that obtained using finite-
differences (Frp), from Marinc & Foysi (2012).

resolution. This leads to adjoint equations which deviate
from those obtained by a formal derivation using the primal
equations, resulting in inconsistent gradients. The discrete
adjoint on the other hand exactly corresponds to its discrete
primal equations leading to a gradient direction which is
accurate even to machine precision. The discussion shows,
that a comparison of the discrete and continuous adjoint for



—=<_— |International Symposium

—

\ é‘ﬁ\¥ On Turbulence and Shear Flow

A Phenomena (TSFP-8)
,—hu/uvsl, 28 - 30, 2013 Poitiers,

CONbBA

France

Table 1.
Re = U;D/u; = 2000 and the Mach number is Ma = U;/c; = 0.9 for all simulations. The number of grid points in the respective coordinate

Parameters of the plane jet simulations. The domain lengths L; were normalized by the jet diameter D. The Reynolds number is

directions are represented by n;. A;nin gives the minimum grid- spacing in direction i. At gives the time step used during the optimization

computations non-dimensionalized by D/U; . The subscript j denotes mean values at the jet inflow.

Case Le L, L. n ny n; Acmin Aymin Azmin At
DNS2D 30 - 34 512 1 640 0.04 - 0.036  0.017
ELES3D | 37 9 28 416 64 320  0.071  0.014  0.065 0.03
LES3D 37 9 28 512 160 400 0.051 0.056 0.051 0.021
DNS3D 37 9 28 800 288 600 0.029 0.031 0.028 0.012

large time dependent minimization problems is of utmost
interest in order to identify possible deficiencies and to give
guidelines for successful continuous adjoint calculations.

Numerical method
The governing equations are the compressible Navier-
Stokes-equations in one of its usual formulations:

Foysi et al. (2010) and data in Stanley & Sarkar (2000),
where grid resolution tests have been performed. Table 1
lists various paramaters including the number of grid points
and the domain size of the direct numerical and large-eddy
simulations (LES). Most of the flow control cases dealing
with sound reduction so far were 2D-simulations, therefore
we included a reference case called DNS2D, for compari-
son. Furthermore, two LES with different grid resolutions
were performed (a coarse (ELES3D) and a well resolved

87p — Imi 1) one (LES3D)) to test the effect of the dimension of the con-
ot Ix; trol and possible influences of the filtering on the optimiza-
om; a17 d U i T ?) tion. A full three-dimensional optimal control simulation
ot Jx; Ox | ax; PHM T 58 TR (DNS3D) serves for comparison and should provide insight
dp b} 0 ps into differences to the 2D case and the LES. Transition
o gl’”i + %M?’* 1) gT to turbulence was triggered by convecting disturbances ob-
' P ' ' P tained through separate precursor simulations of plane tem-
—(y=1)p=—— g ui+(y—1D1 gy Ui 3) porally evolving mixing layers with initially smaller mo-

T 9x;

where p is the density, u; are the velocities in direction 7, ¥
the ratio of the specific heats, T temperature and A the heat

mentum thickness into the shear layers (see Foysi et al.
(2010) and Marinc & Foysi (2012) for details).

conductivity. Furthermore we have m; = pu; and Optimization
B B du;  Jdu; s 2 duy, 4 In this work we aim to minimize the noise emission of a
Tij = Hsij = H ox; + ox; Y ox; )’ S jet. A measure for the far field sound pressure is given by

where U is the viscosity.

The equations of motion are solved in cartesian coordi-
nates. To minimize errors in the adjoint optimization a low-
dispersion-dissipation fourth-order Runge-Kutta scheme of
Hu et al. (1996) in its low storage form is applied. Spatial
differentiation is performed using optimized explicit DRP-
SBP (dispersion-relation-preserving summation by parts)
finite-difference operators of sixth-order as in Johansson
(2004). The subgrid-scale modeling for the large eddy sim-
ulation is performed by using a variant of the approximate
deconvolution method originally introduced by Stolz et al.
(Stolz & Adams, 1999; Stolz et al., 2001), which is based
on explicit filtering alone (Mathew et al., 2003, 2006; Foysi
et al., 2010). This approach is similar to the selective fil-
tering procedure suggested in Bogey & Bailly (2006). The
filter was also applied to remove grid to grid oscillations in
the direct numerical simulations.

To allow acoustic waves to pass the boundaries of the
numerical domain without reflections, characteristic bound-
ary conditions after Lodato et al. (2008) were implemented,
together with a combination of grid stretching and spatial
filtering within a sponge zone surrounding the physical do-
main close to the boundaries to damp disturbances (Foysi
et al., 2010), as indicated in figure 2.

The resolution and grid size of the two- and three-
dimensional DNS as well as LES were chosen based on
similar simulations at comparable Reynolds numbers in

P(x))?dt dQ,

3= // (x,1) (5)

which serves as our performance index or cost functional.
Here T is the control-horizon, Q is a small volume in the
farfield of the jet and p denotes the temporal average of the
pressure over the interval 7. In this work we aim to find
control-parameters which minimize S under the constraint,
that the solution has to fulfill the Navier-Stokes-equations.
The control is applied within two regions located in both
jet shear layers near the inflow, where heating or cooling
is applied (see figure 2). Accordingly, a forcing term
Rp f g is added to the right-hand side (RHS) of the pressure
equation, where g is the control, R the ideal gas constant
and f is a shape function to prevent discontinuities when
transitioning from uncontrolled to controlled areas. In
this work, the gradient ¢ with respect to the control is
needed to find the minimum of our cost functional. An
efficient way in calculating this gradient is in using the
so-called adjoint flow field (Gunzburger (2002)). In our
case we get ¥(g) = dS3/dg = pRfp* and used it in an
LBFGS (low-storage BFGS) optimization routine (Nocedal
& Wright, 2006). A backtracking algorithm with quadratic
interpolation or a Wolfe-linesearch (mixed quadratic/cubic
interpolation, Nocedal & Wright (2006)) were applied in
addition to update the control from the previous iteration,
g = g% —r 4(g°!?). Here, r denotes a generalized

=8
distance in control space. Various optimization schemes
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Figure 2.
The jet is heated/cooled in a small volume within the shearlayers of

Ilustration of the control-setup for the simulations.

the jet. The noise-reduction is expected to take place in the observer
region in the near far-field of the jet, indicated by a thick black
horizontal line. Shown is the streamwise velocity component in the
turbulent region and the pressure in the farfield. The area outside
the dashed lines are unphysical sponge-regions.

were tested, including different variants of conjugate
gradient schemes as well as schemes using second-order
gradient information (Newton conjugate-gradient, Newton-
Lanczos), various line-search methods and trust-region
algorithms. The LBFGS together with a Wolfe-linesearch
performed best (details are given at the conference). The
adjoint pressure p* which is part of the optimization
process is obtained from the time-dependent solution of the
adjoint Navier-Stokes equations, derived as described in
Gunzburger (2002) or Bewley et al. (2001). We then get

%

ER = uu; +TCyT* (6)
dm;  dp* dm; |
T P rll ™
dp*  dmi  Juj N ap*
with
om’ af"ﬁi 0
put = my T 4 S0y 1) gyt
/ axj 8xj 8xj J
) d [dui\*
Hr- 10+ 5 <g) ©)
. [ 9mr  9m]
At T
o [ OQui  duj
- 2(r=p <3x,+ aﬁ-)) (10)
J i
aui * 2 * *
<3761> = 3%+ (=Dprp (1)
. ou dm? Cp ’p*
pCVT - Sl] aT ax (y 1)”’ aXiz
) au,
4sif(y—1)p 8;1" =, (12)
J

where -* denotes the adjoint quantity of the primal variable.
The discrete adjoint is derived, based on the discrete

Rage K ula SRt o A YA RS operator

at step s, g; are M + 1 control vectors and y;; are scalars

CON5A
ko=0
Py = Pinis (13)
M
k, = a, 1k, 1 + At R(QS,O + Vs—1,iGi ERS {1N}
i=0
D, = F, [®s-1 + Ps-1ks] se{l...N},

representing the strength of the control g; at step s. R(P)
indicates the right-hand side of the Navier-Stokes equations
and the o and f3; are parameters given in Hu et al. (1996).
If the cost functional is given by 3 = YV, 3(®y), the La-
grangian is determined to be

N N M
& ke—aoakey — At R(®o)+ Y18

s=0 s=1 i=0
- Wl [®y — Fy [®o1 + Be1ks]] — & ko — wy [P0 — Pinit] (14)
s=1
with discrete adjoint variables &, ;. A variation of the
Lagrangian with respect to the state variables finally gives

oL RS N AR
=P = I A T
o® s=0 o® P, s=1 E)rl> P51
N
w, - F®, —w (15)
s=1
oL v N .
aikkls = fs — Qs lks 1~ Ws, [7FS[35,1k'5] 75({1(6

5= s=1
leading to the adjoint Runge-Kutta integration
T
ON

ov =\ S8
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En =Bn-1Fwn

or \7 03, \"
W :FsT+1Ws+1 + At <7 > Eor1 T ( hd )
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The index s runs from O to N — 1 for @ and from 1 to
N —1 for £. The boundary condition is given for s = N
indicating that the integration is backwards in time. Using
these results, the gradient is determined to be

Ay T aL T N .
(i) :(@> =At v 1€{0... M}

s=1

For the continuous adjoint non-reflecting boundary condi-
tions were developed (Marinc & Foysi, 2012). No such
derivation is necessary for the discrete adjoint, which is
solely determined by the chosen discretization. The contin-
uous and discrete adjoint implementation were validated us-
ing the anti-sound test case (Wei & Freund, 2006). Further-
more, for the discrete adjoint sensitivities were compared
with sensitivities obtained via complex differentiation. Ad-
ditionally, the correct transposition was tested using random
vectors, showing it to be accurate up to machine precision.
The linear response of the cost functional to a perturbation
of the control was calculated, too, using the sensitivity equa-
tions and the gradient of the Lagrangian.

Results

In a first test the continuous and discrete adjoint were used
to minimize the cost functional for case DNS2D (figure
3). Both approaches were able to reduce the functional
and the sound emmission, the discrete approach, however,
performed better leading to a greater reduction in two
dimensions. The performance was even better for long con-
trol horizons (not shown), indicating that inconsistencies
introduced by filtering or the boundary conditions clearly
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Table 2. List of the different cases considered for testing of the
gradient accuracy for case LES3D. RK: formulation used for the
RK iteration. RHS: formulation used for the RHS. fsave: number
of RK iterations after which the flow field was saved. Save-type:

single or double precision. Boundary: boundary treatment details.

Case RK RHS save save-type boundary
ContNoBC | continuous | continuous 2 double non
ContSpng | continuous | continuous 2 double sponge

ContF2 continuous | continuous 2 double non-reflecting

ContF4 continuous | continuous 4 double non-reflecting

ContF8 continuous | continuous 8 double non-reflecting
ContF16 | continuous | continuous 16 double non-reflecting

Mixed discrete continuous | recompute | double non-reflecting

Ref discrete discrete recompute | double discrete

DiscF2 discrete discrete 2 double discrete

DiscF4 discrete discrete 4 double discrete

DiscF8 discrete discrete 8 double discrete

DiscF16 discrete discrete 16 double discrete
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Figure 3. Comparison of the reduction of the cost-function, plot-
ted over the number of LBFGS-iterations for case DNS2D.

affect the optimization performance.

For solving the compressible Navier-Stokes equations var-
ious boundary conditions are found in the literature, us-
ing non-reflecting boundary conditions (see discussion in
Colonius (2004)) or sponge regions (Bodony, 2005; Mani,
2012). For the adjoint, too, it is necessary to guarantee dis-
turbances to cross the boundaries unobstracted, otherwise
it is possible for reflected waves to interact with the ac-
tuator position and instead of controlling the target region
the inflow region could be influenced. Additionally, the 2D
results indicate that even small changes in the adjoint can
have a large effect on the optimization. For this reason dif-
ferent cases were investigated using various combinations
of boundary conditions for the continuous adjoint, as tabu-
lated in table 2, for case LES3D.

Figure 4 shows the correlation coefficient calculated
using the continuous and “exact” adjoint gradient over time
for some of these cases. The “exact” gradient was defined to
be the full solution of the discrete adjoint optimization prob-
lem. As the adjoint equations are solved backwards in time,
the correlation is highest at large non-dimensional times
and decreases towards the beginning of the time horizon.
Using only the mild sponge regions present in the primal
flow equations no further boundary treatment was used for
the adjoint in case ContNoBC, simulated as a reference. In
case ContSpng a strong sponge region was added to the ad-
joint equations to damp unwanted disturbances, thereby in-
troducing inconsistencies between primal and adjoint. This
approach was motivated by the similar strategy used for the
primal flow equations (Bodony, 2005; Mani, 2012). Both
simulations are seen to become decorrelated from the ex-
act solution, soon. The sponged solution deviates from
that point on, when oblique traveling disturbances reach the
inflow boundary of the jet and get, although damped, re-
flected. Case ContF2, on the other hand, uses non-reflecting
boundary conditions for the adjoint. Here, the flow fields
were stored every second time step for use within the adjoint
computation, whereas in case Mixed a recomputation of the
flow fields within each time interval was performed. Ad-
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Figure 4. Correlation coefficient of the continuous adjoint gra-
dient with the “exact” gradient for different choices of boundary
conditions, for case LES3D. As discussed in the text, it is seen that

proper adjoint boundary conditions are important.

ditionally, a mixed calculation approach was used for this
case, in that the discrete adjoint Runge-Kutta step was used
together with the continuous adjoint for the right-hand-side
(RHS). We observe a good agreement of the continuous ad-
joint gradient with its exact value, when using the charac-
teristic boundary conditions. However, with increasing sim-
ulation time deviations occur due to slight inconsistencies
introduced by filtering and the boundary conditions, for ex-
ample. Here, too, the deviations start to increase as soon
as the disturbances reach the boundary, nevertheless, the
boundary conditions are able to transmit most of them such
that large deviations don’t build up. No advantage is gained
by using a mixed approach, however. The gradient of the
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Figure 5. The correlation coefficient of approximations to the dis-
crete adjoint gradient with the “exact” gradient for case LES3D.
The approximations were obtained by using different data storage
frequencies of the primal solution. The number indicates the num-
ber of Runge-Kutta time steps after which data storage takes place.

discrete adjoint solution is depicted in figure 5. The dif-
ferent curves indicate solutions obtained by using different
data storage frequencies of the primal flow solution. This
approach was motivated by the large amount of data of the
primal equations which needs to be stored to advance the
adjoint. Instead of using checkpointing strategies, we used
a third-order accurate interpolation scheme to determine the
fields at time steps within each time interval. A recomputa-
tion of the flow fields was performed for the reference case,
with details to be reported elsewhere. A very accurate solu-
tion is obtained if the data storage freqency is equal and be-
low 4 (cases DiscF2, DiscF4), thereafter, the performance
deteriorates. A closer inspection by using the power spec-
trum of the different flow variables revealed, that increasing
parts of the spectrum which don’t just correspond to numer-
ical white noise are neglected (not shown). For a data stor-
age frequency of 8, for example, the neglected modes car-
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ried less then one percent of the total power, indicating, that
an accurate reconstruction of the flow fields is of paramount
importance.

For three-dimensional optimization simulations, the
performance of the discrete and continuous adjoint is simi-
lar, as can be seen in figure 6, for example. Since these op-
timization methods only converge to local instead of global
minima, the initial conditions may determine the subse-
quent performance. As this case indicates a stronger re-
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Figure 6. Reduction of the cost-functional as a function of the
optimization iterations for case ELES3D.

duction for the continuous case, the discrete solution was
restarted by making use of a flow field obtained from the
continuous adjoint optimization (“+’-symbols). As ex-
pected, both approaches perform similar then, emphasizing
the importance of the choice of the initial condition in ob-
taining a strong minimum.

It was recognized, too, that the sound reduction be-
came smaller for the three-dimensional case compared
to DNS2D. Two different LES simulation with coarse
(ELES3D) and fine resolution (LES3D) and a DNS were
performed because of that, to identify possible modeling
errors due to the LES approach. However, by investigating
figure 7 we observe a tendency of decreasing performance
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Figure 7. Reduction of the cost-functional normalized with its
starting value as a function of the optimization iterations for the
discrete adjoint simulations. The reduction clearly decreases with

increasing dimension of the control.

of the control with increasing resolution and therefore di-
mension of the control space, due to the fact that the area of
application of the control was the same for all cases. The
two-dimensional case DNS2D has a much smaller control
space dimension due to the missing third dimension and the
larger time-steps and shows a much stronger cost functional
reduction. Additionally, the complexity of the turbulence
is reduced, which is revealed in the more coherent struc-
tures and is linked to the missing vortex-stretching mech-
anism. Therefore, a test was performed by updating the
control only at every n'” grid point in the spatial directions
as well as at every § timesteps and interpolating the con-
trol in between using a Catmull-Rom spline (Marschner &
Lobb, 1994). As a consequence, it’s not further possible to
influence the whole spectrum using this type of approach,
with the hope of better control efficiency due to a reduc-
tion of the control dimension. It is clearly seen in figures
8 and 9, that the cost functional reduction is indeed better
when reducing the control space dimension for the LES and
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Figure 8. Comparison of the cost functional plotted over the op-
timization iterations for case ELES3D, using two different cases of
data reduction. Here, gapaByF0 refers to a simulation using every
octh, Bth and yth grid point and every &th time step for application
of the control.

DNS. An additional case using only every 5th point and ev-
ery 8th time step shows no further improvement compared
to using every third point and time step. This indicates,
that a balance between control space reduction and con-
trollability was reached, here. Nevertheless, a reduction as
the one observed for case DNS2D is still not reached. The
LES performs better than the DNS, however, the effective
Reynolds number of the large-eddy simulations is lower due
to the increased viscosity as a consequence of the subgrid -
modelling.
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Figure 9.  Comparison of the cost functional plotted over the
optimization iterations for case DNS3D, using different cases of

data reduction. For the notation see figure 8.

Conclusion

Adjoint control simulations to reduce the sound emission in
the near farfield of plane jets were performed using two- and
three-dimensional DNS and LES. The continuous and dis-
crete adjoint equations were derived and used for obtaining
the gradient, needed to reduce the cost functional by mak-
ing use of an LBFGS method with a Wolfe line-search. As
the continuous adjoint is subject to inconsistencies due to
possible differences in the discretization and boundary con-
ditions of the adjoint equations, which are often treated nu-
merically different from its corresponding primal equations,
a comparison between the continuous and discrete adjoint
was performed. The discrete adjoint, which is computed up
to machine precision, provided the “exact” gradient to com-
pare with. Using various approaches to calculate the bound-
ary conditions for the continuous adjoint, the necessity for
non-reflecting boundary conditions (NRBC) together with
strong sponge regions for the continuous adjoint became
obvious. As the NRBCs only allow waves approaching the
boundary normally to be transmitted, reflections of oblique
waves occur and lead to sensitivities in this region, result-
ing in the control trying to influence the boundary. To avoid
such problems for the discrete adjoint, a strong sponge for
the primal was used to reduce the sensitivities there, the
difference in performance of both methods was, however,
small. With increasing resolution and therefore an increas-
ing range of scales and control space dimension, a decrease
in control efficiency could be observed. A similar observa-
tion for channel flow with increasing Reynolds number was
found by Collis et al. (2000). This increased complexity re-
sults in problems, since the gradient based optimization pro-
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cedures usually don’t converge to a global, but local mini-
mum. This could be clearly seen for the performed discrete
adjoint optimization using LES, which performed worse in
one case than the continous adjoint approach. Furthermore,
the increased control dimension with increasing resolution
could be indentified, as suspected, to be one reason for the
decreased control efficiency. Using only a limited number
of points and timesteps for the control field in addition to
interpolation in between, the efficiency could be drastically
increased. A more detailed investigation will be presented
at the conference, nevertheless, the results show that further
research is still necessary to identify possibilities to reduce
the control dimension and to make use of global optimiza-
tion procedures.
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