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ABSTRACT
A comparison of the optimal control of two- and three-
dimensional plane jets using the continuous and discrete
adjoint of the instationary Navier-Stokes equations was per-
formed. The control aim was to reduce the sound emission
in the near far-field by using a heat source actuation within
the transitioning jet shear layers. The fully compress-
ible Navier-Stokes equations were solved using dispersion-
relation preserving spatial discretization schemes and a low-
dissipation-dispersion Runge-Kutta scheme. The Reynolds
number based on the slot diameter was set to 2000 and the
Mach number to 0.9. Direct numerical as well as large-eddy
simulations in two and three dimensions where performed
to estimate the influence of modelling and resolution on the
results. The results show a slight advantage of using the
discrete adjoint, especially when handling boundary condi-
tions, since the calculation of the gradient of the cost func-
tional is more accurate. It is interesting, too, that the control
efficiency reduces with increasing resolution and therefore
dimension of the control. Reducing it by applying a se-
lected interpolation in the control area shows an increase in
efficiency and sound reduction.

Introduction
Optimal control of flows using the adjoint equations has be-
come a valuable tool in fluid mechanics, with applications
ranging from aerodynamic shape optimization (Kuruvila
et al., 1994; Giles & Pierce, 2000; Brezillon & Gauger,
2004; Giering et al., 2005; Srinath & Mittal, 2010; Zy-
maris et al., 2010; Jameson & Ou, 2011) to sound reduction
in compressible flows (Joslin et al., 2005; Wei & Freund,
2006; Spagnoli & Airiau, 2008; Freund, 2010; Kim et al.,
2010; Rumpfkeil & Zingg, 2010; Marinc & Foysi, 2012).
The principal task is to minimize a cost functional or ob-
jective (unwanted noise or drag, for example). Differential
equation constraints are additionally imposed, which here
consist of the primal flow equations. The minimization pro-
cedure requires the determination of the gradient of this cost
functional (Gunzburger, 2002). Unfortunately, a finite dif-
ference approach requires O(n) solutions of our primal flow
equations for n different design variables to obtain the gra-
dient, which is impractical. Optimal control based on the
adjoint equations on the other hand is independent of the
number of design parameters. The adjoint may be calcu-
lated using two different routes. One possibility is to derive

the adjoint equations analytically based on the problem de-
scribing partial differential equations (primal), before dis-
cretizing the resulting equations (“first optimize then dis-
cretize” (FOD). Alternatively, the primal flow equations are
discretized first and these already discretized equations are
used to determine the discrete adjoint equations (“first dis-
cretize then optimize” (FDO)). Both routes lead to different
numerical results which are equal only in the limit of in-
finitely small grid and time steps. For a further discussion of
disadvantages and advantages see Gunzburger (2002). For
aeroacoustic sound reduction most authors used the contin-
uous adjoint approach, so far (Joslin et al., 2005; Wei &
Freund, 2006; Spagnoli & Airiau, 2008; Freund, 2010; Kim
et al., 2010; Marinc & Foysi, 2012), making it possible to
adjust or change the discretization or boundary treatment of
the adjoined compared to the primal flow equations. How-
ever, Marinc & Foysi (2012) showed recently, that the gra-
dient direction deviates from the exact gradient direction to-
wards the end of the control horizon for instationary control
simulations (figure 1, normalization was done by the cor-
responding values at the nozzle exit). It’s possible to even
have opposite gradient directions rendering the minimiza-
tion ineffective or even unsuccessful. Among the possible
reasons are inconsistencies due to a different discretization
of the adjoint compared to the primal flow equations, dif-
ferent boundary conditions, additional numerical filtering
for stabilization in critical areas with large gradients or grid

The perturbations are chosen to have Gaussian shapes in space
and time with an amplitude small enough to remain in the lin-
ear regime. Because of the localization in time the accuracy
of our gradient can be estimated at several distinct times this
way. When comparing FFD with Fgrad the case FFD · Fgrad < 0
can be considered as a worst case scenario as it implies that the
calculated gradient isn’t an ascent direction.
Fig. 11 shows values of FFD and Fgrad for various per-

turbations and for different controls, obtained after different
conjugate-gradient optimization steps for the DNS2D-case.
The control-length was chosen to be ∆T ≈ 72. As the control
requires a finite time to influence the cost-functional, the control
is not able to change the cost-functional at times near the end of
the simulation. Thus, the gradient is zero for 52 ! t ≤ 72. For
20 ! t the values of FFD and Fgrad roughly agree, i.e. they show
the same tendencies and the sign agrees, indicating that the cal-
culated gradient is acceptable during this period. For t ! 20
the functions have distinct values, which leads to the conclu-
sion that the gradient contains no reliable information about the
steepest descent direction and no significant reduction of the
cost-functional can be expected from a control obtained by this
signal. To summarize, it can be stated that the calculated gradi-
ent is acceptable for a time-interval of approximately ∆t ≈ 50
for the DNS2D-case.
This control-interval length is approximately twice as large

than the time which is needed for the perturbations to influence
the vortex pairing processes (∆t ≈ 7) and the subsequent time
needed for the sound to propagate to the observation region Ω
(∆t ≈ 19).
Interestingly, the acceptable time-interval ∆t ≈ 50 is shorter

than the interval of Tp = 79 used in section 3.3 for the control
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Figure 11: Comparison of FFD and Fgrad (see eq. (14) and (15)) for the
DNS2D-case for (a) the first and (b) the second CG-iteration.

of the 2D-jet.
It is interesting to note, that the temporal correlation between

the control and the instabilities in the jet shear layers is impor-
tant. Using the control obtained from the optimization calcu-
lation on a jet flow developing from a slightly different initial
condition resulted in no noise-reduction, in fact the controlled
jet became even louder than the uncontrolled one. This indi-
cates that the control is closely connected to the flow-field evo-
lution and the statistical properties of the control alone aren’t
sufficient for a successful optimization.
To check the necessity for a correct gradient direction, a fur-

ther numerical experiment was performed. The gradient ob-
tained using the adjoint was replaced by picking an arbitrary
gradient out of a random sub-interval within the full receding
horizon simulation, described during the next section. It should
be noted, that the linesearch used in the conjugate-gradient-
algorithm is constructed in such a way as to iterate until a reduc-
tion of the cost-functional is achieved, for any prescribed con-
trol. The reduction obtained this way was less than 1% of the
reduction obtained with the correct gradient-direction. The gra-
dient calculated by using adjoint optimization is therefore not
arbitrary and a correct direction is important to achieve strong
sound reduction. Nevertheless, noise reduction can be achieved
for time horizons slightly longer then those determined to be ad-
equate by performing a comparison with finite differences. In
a further simulation we set the gradient of the cost-functional
to zero for t ≤ 20, where we expect deviations from the correct
gradient direction. In this case the noise reductionwas observed
to start later in time compared to the reference case, where the
information of the adjoint over the whole control-interval was
used. This is clear, of course, since no gradient information is
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Figure 12: Comparison of FFD and Fgrad (see eq. (14) and (15)) for the
LES3D-case for (a) the first and (b) the second CG-iteration.

7

Figure 1. Comparison of the gradient direction of the plane jet
using the continuous adjoint (Fgrad ) with that obtained using finite-
differences (FFD), from Marinc & Foysi (2012).

resolution. This leads to adjoint equations which deviate
from those obtained by a formal derivation using the primal
equations, resulting in inconsistent gradients. The discrete
adjoint on the other hand exactly corresponds to its discrete
primal equations leading to a gradient direction which is
accurate even to machine precision. The discussion shows,
that a comparison of the discrete and continuous adjoint for
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Table 1. Parameters of the plane jet simulations. The domain lengths Li were normalized by the jet diameter D. The Reynolds number is
Re =U jD/µ j = 2000 and the Mach number is Ma =U j/c j = 0.9 for all simulations. The number of grid points in the respective coordinate
directions are represented by ni. ∆i,min gives the minimum grid- spacing in direction i. ∆t gives the time step used during the optimization
computations non-dimensionalized by D/U j . The subscript j denotes mean values at the jet inflow.

Case Lx Ly Lz nx ny nz ∆x,min ∆y,min ∆z,min ∆t

DNS2D 30 - 34 512 1 640 0.04 - 0.036 0.017

ELES3D 37 9 28 416 64 320 0.071 0.014 0.065 0.03

LES3D 37 9 28 512 160 400 0.051 0.056 0.051 0.021

DNS3D 37 9 28 800 288 600 0.029 0.031 0.028 0.012

large time dependent minimization problems is of utmost
interest in order to identify possible deficiencies and to give
guidelines for successful continuous adjoint calculations.

Numerical method
The governing equations are the compressible Navier-
Stokes-equations in one of its usual formulations:

∂ρ
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where ρ is the density, ui are the velocities in direction i, γ
the ratio of the specific heats, T temperature and λ the heat
conductivity. Furthermore we have mi = ρui and

τi j = µsi j = µ
(

∂ui

∂x j
+

∂ui

∂x j
−δi j

2
3

∂uk

∂xk

)
, (4)

where µ is the viscosity.
The equations of motion are solved in cartesian coordi-

nates. To minimize errors in the adjoint optimization a low-
dispersion-dissipation fourth-order Runge-Kutta scheme of
Hu et al. (1996) in its low storage form is applied. Spatial
differentiation is performed using optimized explicit DRP-
SBP (dispersion-relation-preserving summation by parts)
finite-difference operators of sixth-order as in Johansson
(2004). The subgrid-scale modeling for the large eddy sim-
ulation is performed by using a variant of the approximate
deconvolution method originally introduced by Stolz et al.
(Stolz & Adams, 1999; Stolz et al., 2001), which is based
on explicit filtering alone (Mathew et al., 2003, 2006; Foysi
et al., 2010). This approach is similar to the selective fil-
tering procedure suggested in Bogey & Bailly (2006). The
filter was also applied to remove grid to grid oscillations in
the direct numerical simulations.

To allow acoustic waves to pass the boundaries of the
numerical domain without reflections, characteristic bound-
ary conditions after Lodato et al. (2008) were implemented,
together with a combination of grid stretching and spatial
filtering within a sponge zone surrounding the physical do-
main close to the boundaries to damp disturbances (Foysi
et al., 2010), as indicated in figure 2.

The resolution and grid size of the two- and three-
dimensional DNS as well as LES were chosen based on
similar simulations at comparable Reynolds numbers in

Foysi et al. (2010) and data in Stanley & Sarkar (2000),
where grid resolution tests have been performed. Table 1
lists various paramaters including the number of grid points
and the domain size of the direct numerical and large-eddy
simulations (LES). Most of the flow control cases dealing
with sound reduction so far were 2D-simulations, therefore
we included a reference case called DNS2D, for compari-
son. Furthermore, two LES with different grid resolutions
were performed (a coarse (ELES3D) and a well resolved
one (LES3D)) to test the effect of the dimension of the con-
trol and possible influences of the filtering on the optimiza-
tion. A full three-dimensional optimal control simulation
(DNS3D) serves for comparison and should provide insight
into differences to the 2D case and the LES. Transition
to turbulence was triggered by convecting disturbances ob-
tained through separate precursor simulations of plane tem-
porally evolving mixing layers with initially smaller mo-
mentum thickness into the shear layers (see Foysi et al.
(2010) and Marinc & Foysi (2012) for details).

Optimization
In this work we aim to minimize the noise emission of a
jet. A measure for the far field sound pressure is given by

ℑ =
∫

Ω

∫

T
(p(x, t)− p(x))2 dt dΩ, (5)

which serves as our performance index or cost functional.
Here T is the control-horizon, Ω is a small volume in the
farfield of the jet and p denotes the temporal average of the
pressure over the interval T . In this work we aim to find
control-parameters which minimize ℑ under the constraint,
that the solution has to fulfill the Navier-Stokes-equations.
The control is applied within two regions located in both
jet shear layers near the inflow, where heating or cooling
is applied (see figure 2). Accordingly, a forcing term
Rρ f g is added to the right-hand side (RHS) of the pressure
equation, where g is the control, R the ideal gas constant
and f is a shape function to prevent discontinuities when
transitioning from uncontrolled to controlled areas. In
this work, the gradient G with respect to the control is
needed to find the minimum of our cost functional. An
efficient way in calculating this gradient is in using the
so-called adjoint flow field (Gunzburger (2002)). In our
case we get G (g) = dℑ/dg = ρR f p∗ and used it in an
LBFGS (low-storage BFGS) optimization routine (Nocedal
& Wright, 2006). A backtracking algorithm with quadratic
interpolation or a Wolfe-linesearch (mixed quadratic/cubic
interpolation, Nocedal & Wright (2006)) were applied in
addition to update the control from the previous iteration,
gnew = gold − r G (gold). Here, r denotes a generalized
distance in control space. Various optimization schemes
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Figure 5.1: Illustration of the control-setup. The jet is heated/cooled in a small volume

within the shearlayers of the jet. The noise reduction is expected to take place in the observer

region in the near far-field of the jet, indicated by a thick black horizontal line. Shown is the

streamwise velocity component in the turbulent region and the density in the farfield. The area

outside the dashed lines are unphysical sponge-regions.

ometry together with the position of the noise reduction zone is illustrated in figure
5.1.

Figure 2. Illustration of the control-setup for the simulations.
The jet is heated/cooled in a small volume within the shearlayers of
the jet. The noise-reduction is expected to take place in the observer
region in the near far-field of the jet, indicated by a thick black
horizontal line. Shown is the streamwise velocity component in the
turbulent region and the pressure in the farfield. The area outside
the dashed lines are unphysical sponge-regions.

were tested, including different variants of conjugate
gradient schemes as well as schemes using second-order
gradient information (Newton conjugate-gradient, Newton-
Lanczos), various line-search methods and trust-region
algorithms. The LBFGS together with a Wolfe-linesearch
performed best (details are given at the conference). The
adjoint pressure p∗ which is part of the optimization
process is obtained from the time-dependent solution of the
adjoint Navier-Stokes equations, derived as described in
Gunzburger (2002) or Bewley et al. (2001). We then get
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where ·∗ denotes the adjoint quantity of the primal variable.
The discrete adjoint is derived, based on the discrete
Runge-Kutta sub-step (Φ: vector of state variables)where Fs is the discrete representation of a filter operator
at step s, gi are M + 1 control vectors and γs,i are scalars

4.3. Implementation of Discrete Adjoint 33

the computations and obtain derivative information by applying chain/product rule
to each computation.

However, it was chosen to implement the discrete adjoint ”by hand“. As the imple-
mentation of the discrete adjoint become quite cumbersome for the full Navier-Stokes
system the approach chosen in this work will be sketched in the following.

4.3.1. Discrete Adjoint of a Runge-Kutta Step

The complete series of N Runge-Kutta substeps together with filtering and control
can be written as

k0 = 0 (4.30)

Φ0 = Φinit (4.31)

ks = αs−1ks−1 + ∆t

[
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s ∈ {1 . . . N} (4.32)

Φs = Fs [Φs−1 + βs−1ks] s ∈ {1 . . . N}, (4.33)

where Fs is the discrete representation of a filter operator at step s, gi are M + 1
control vectors and γs,i are scalars giving the strength of control gi at step s. The
rest of the notation is equal to equation (4.28)-(4.29).
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A variation with respect to the state variables gives
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representing the strength of the control gi at step s. R(Φ)
indicates the right-hand side of the Navier-Stokes equations
and the αs and βs are parameters given in Hu et al. (1996).
If the cost functional is given by ℑ = ∑N

s=0 ℑs(Φs), the La-
grangian is determined to be
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with discrete adjoint variables ξs, ωs. A variation of the
Lagrangian with respect to the state variables finally gives
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leading to the adjoint Runge-Kutta integration

34 Chapter 4. Numerics

k = 0
for m = 1, . . . , N

ki+ = Dimxm

end
(a)

k = 0
for m = 1, . . . , N

km+ = Dimxi

end
(b)

Algorithm 7: Algorithms for obtaining (a) k = Dx and (b) k = DTx, where D is a
matrix with non zero entries in the ith row, only.

which leads to the adjoint RK integration

ωN =
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)T

(4.37)

ξN =βN−1F
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NωN (4.38)
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s ∈ {0 . . . N − 1} (4.39)

ξs =αsξs+1 + βs−1F
T
s ωs s ∈ {1 . . . N − 1} (4.40)

ξ0 =α0ξ1 (4.41)

Note, that in analogy to the continuous example in section 3.1.2 a boundary condition
is given at the final iteration N . This implies that the system of equations (4.37)-
(4.41) has to be solved backward starting at iteration N .

The gradient of the cost functional is given by

(
d!
dgi

)T

=

(
∂L

∂gi

)T

= ∆t
N∑

s=1

γs−1,iξs i ∈ {0 . . . M} (4.42)

4.3.2. Discrete Adjoint of Right Hand Side

The adjoint RK integration in equations (4.37)-(4.41) reveals that the transposed

of the linearized and discretized Navier-Stokes operator
(

∂R
∂Φ

∣∣
Φs

)T

is needed. As

the the operator ∂R
∂Φ

∣∣
Φs

is time dependent computing the single components of this
operator would not be efficient and only the computation of a matrix vector product
is implemented. However, without the knowledge of these single components special
considerations have to be made to be able to compute the transpose of this operator.

Lets start with a discrete linear operator Di that has non-zero entries in the ith row,
only. The vector product k = Dix can be computed with algorithm 7(a). On the

other hand the product k = DiTx can be computed by algorithm 7(b). Note, that
in both cases only the matrix coefficients of the ith row have to be used. This is
the reason for the usefulness of the above algorithm as the coefficients of DT can be

The index s runs from 0 to N − 1 for ω and from 1 to
N − 1 for ξ . The boundary condition is given for s = N
indicating that the integration is backwards in time. Using
these results, the gradient is determined to be
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k = 0
for m = 1, . . . , N

ki+ = Dimxm

end
(a)

k = 0
for m = 1, . . . , N

km+ = Dimxi

end
(b)

Algorithm 7: Algorithms for obtaining (a) k = Dx and (b) k = DTx, where D is a
matrix with non zero entries in the ith row, only.

which leads to the adjoint RK integration

ωN =

(
∂!N

∂Φ

∣∣∣∣
ΦN

)T

(4.37)

ξN =βN−1F
T
NωN (4.38)

ωs =F T
s+1ωs+1 + ∆t

(
∂R

∂Φ

∣∣∣∣
Φs

)T

ξs+1 +

(
∂!s

∂Φ

∣∣∣∣
Φs

)T

s ∈ {0 . . . N − 1} (4.39)

ξs =αsξs+1 + βs−1F
T
s ωs s ∈ {1 . . . N − 1} (4.40)

ξ0 =α0ξ1 (4.41)

Note, that in analogy to the continuous example in section 3.1.2 a boundary condition
is given at the final iteration N . This implies that the system of equations (4.37)-
(4.41) has to be solved backward starting at iteration N .

The gradient of the cost functional is given by

(
d!
dgi

)T

=

(
∂L

∂gi

)T

= ∆t
N∑

s=1

γs−1,iξs i ∈ {0 . . . M} (4.42)

4.3.2. Discrete Adjoint of Right Hand Side

The adjoint RK integration in equations (4.37)-(4.41) reveals that the transposed

of the linearized and discretized Navier-Stokes operator
(

∂R
∂Φ

∣∣
Φs

)T

is needed. As

the the operator ∂R
∂Φ

∣∣
Φs

is time dependent computing the single components of this
operator would not be efficient and only the computation of a matrix vector product
is implemented. However, without the knowledge of these single components special
considerations have to be made to be able to compute the transpose of this operator.

Lets start with a discrete linear operator Di that has non-zero entries in the ith row,
only. The vector product k = Dix can be computed with algorithm 7(a). On the

other hand the product k = DiTx can be computed by algorithm 7(b). Note, that
in both cases only the matrix coefficients of the ith row have to be used. This is
the reason for the usefulness of the above algorithm as the coefficients of DT can be

For the continuous adjoint non-reflecting boundary condi-
tions were developed (Marinc & Foysi, 2012). No such
derivation is necessary for the discrete adjoint, which is
solely determined by the chosen discretization. The contin-
uous and discrete adjoint implementation were validated us-
ing the anti-sound test case (Wei & Freund, 2006). Further-
more, for the discrete adjoint sensitivities were compared
with sensitivities obtained via complex differentiation. Ad-
ditionally, the correct transposition was tested using random
vectors, showing it to be accurate up to machine precision.
The linear response of the cost functional to a perturbation
of the control was calculated, too, using the sensitivity equa-
tions and the gradient of the Lagrangian.

Results
In a first test the continuous and discrete adjoint were used
to minimize the cost functional for case DNS2D (figure
3). Both approaches were able to reduce the functional
and the sound emmission, the discrete approach, however,
performed better leading to a greater reduction in two
dimensions. The performance was even better for long con-
trol horizons (not shown), indicating that inconsistencies
introduced by filtering or the boundary conditions clearly
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Table 2. List of the different cases considered for testing of the
gradient accuracy for case LES3D. RK: formulation used for the
RK iteration. RHS: formulation used for the RHS. fsave: number
of RK iterations after which the flow field was saved. Save-type:
single or double precision. Boundary: boundary treatment details.3. Gradient Accuracy 4

Case RK RHS fsave save-type boundary

ContNoBC continuous continuous 2 double non
ContSpng continuous continuous 2 double sponge
ContF2 continuous continuous 2 double non-reflecting
ContF4 continuous continuous 4 double non-reflecting
ContF8 continuous continuous 8 double non-reflecting
ContF16 continuous continuous 16 double non-reflecting
Mixed discrete continuous recompute double non-reflecting
Ref discrete discrete recompute double discrete

DiscF2 discrete discrete 2 double discrete
DiscF4 discrete discrete 4 double discrete
DiscF8 discrete discrete 8 double discrete
DiscF16 discrete discrete 16 double discrete

Table 1: List of the different cases considered for testing of the gradient accuracy for the
LES3D-case.

calculated by

corr(x,a) =
xiai√

xjxjakak
(2)

Note that this correlation also corresponds to the sine of the angle between x and a. The

relative deviation is defined as

dev(x,a) =
||x− a||2

||x||2
(3)

In order to avoid spurious correlations through the window function f only gradient values

with a function value of f near to one were considered.
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Figure 9: Comparison of cost-functional over LBFGS-iterations for the DNS2D-case with
a short control intervall.[1]
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Figure 10: Comparison of cost-functional over LBFGS-iterations for the DNS2D-case with
a long control intervall.
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ℑ

Figure 3. Comparison of the reduction of the cost-function, plot-
ted over the number of LBFGS-iterations for case DNS2D.

affect the optimization performance.
For solving the compressible Navier-Stokes equations var-
ious boundary conditions are found in the literature, us-
ing non-reflecting boundary conditions (see discussion in
Colonius (2004)) or sponge regions (Bodony, 2005; Mani,
2012). For the adjoint, too, it is necessary to guarantee dis-
turbances to cross the boundaries unobstracted, otherwise
it is possible for reflected waves to interact with the ac-
tuator position and instead of controlling the target region
the inflow region could be influenced. Additionally, the 2D
results indicate that even small changes in the adjoint can
have a large effect on the optimization. For this reason dif-
ferent cases were investigated using various combinations
of boundary conditions for the continuous adjoint, as tabu-
lated in table 2, for case LES3D.

Figure 4 shows the correlation coefficient calculated
using the continuous and “exact” adjoint gradient over time
for some of these cases. The “exact” gradient was defined to
be the full solution of the discrete adjoint optimization prob-
lem. As the adjoint equations are solved backwards in time,
the correlation is highest at large non-dimensional times
and decreases towards the beginning of the time horizon.
Using only the mild sponge regions present in the primal
flow equations no further boundary treatment was used for
the adjoint in case ContNoBC, simulated as a reference. In
case ContSpng a strong sponge region was added to the ad-
joint equations to damp unwanted disturbances, thereby in-
troducing inconsistencies between primal and adjoint. This
approach was motivated by the similar strategy used for the
primal flow equations (Bodony, 2005; Mani, 2012). Both
simulations are seen to become decorrelated from the ex-
act solution, soon. The sponged solution deviates from
that point on, when oblique traveling disturbances reach the
inflow boundary of the jet and get, although damped, re-
flected. Case ContF2, on the other hand, uses non-reflecting
boundary conditions for the adjoint. Here, the flow fields
were stored every second time step for use within the adjoint
computation, whereas in case Mixed a recomputation of the
flow fields within each time interval was performed. Ad-
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Figure 6.4: The correlation/deviation of the continuous adjoint gradient for different formu-

lations of boundary conditions with/from the exact gradient for case LES3D. As discussed in

the text, it is seen that proper adjoint boundary conditions are important.

to the forcing in the adjoint equations introduced by the sponging of the forward
solution. Thus, further inconsistencies between forward and backward solutions are
introduced this way at the boundary. Nevertheless, this ansatz might be justified by
the observation that the adjoint solution convects towards the inflow in the mean and
the sponge is only applied upstream of the control. Furthermore, using a sponge can
serve as a valid boundary condition for compressible flows as was shown by [3, 25], for
example. Consequently, using a similar approach for the adjoint might be reasonable.
The sponge stabilization works well up to tUj/cj = 75. Thereafter, the correlation
quickly reaches values around zero (not shown) and the amplitude of the adjoint is
largely underestimated. This behaviour can be explained recalling that from this
point on reflections of the adjoint solution at the inflow boundary occur (see figure
6.1(c)).

Figure 6.4 showed that the continuous adjoint approach has special difficulties at
the inflow boundaries of the jet and that these difficulties cannot be overcome by
stronger inflow sponging of the adjoint solution alone. That’s why case ContF2 was
repeated with a strong inflow sponge in both, the flow and the adjoint solution. The
reasoning is that the sponge forcing decreases the sensitivity near the inflow, such
that the adjoint solution should have smaller values there compared to the unsponged
case. As a consequence the inconsistencies observed at the boundary should become
less relevant. Indeed, the reflections at the inflow boundary in the adjoint solution
could be reduced by approximately two orders of magnitude, as can be observed in
figure 6.1(e). Consequently, figure 6.5, which shows the correlation coefficient and
deviation of the continuous adjoint subject to a strong sponge region in comparison to

Figure 4. Correlation coefficient of the continuous adjoint gra-
dient with the “exact” gradient for different choices of boundary
conditions, for case LES3D. As discussed in the text, it is seen that
proper adjoint boundary conditions are important.

ditionally, a mixed calculation approach was used for this
case, in that the discrete adjoint Runge-Kutta step was used
together with the continuous adjoint for the right-hand-side
(RHS). We observe a good agreement of the continuous ad-
joint gradient with its exact value, when using the charac-
teristic boundary conditions. However, with increasing sim-
ulation time deviations occur due to slight inconsistencies
introduced by filtering and the boundary conditions, for ex-
ample. Here, too, the deviations start to increase as soon
as the disturbances reach the boundary, nevertheless, the
boundary conditions are able to transmit most of them such
that large deviations don’t build up. No advantage is gained
by using a mixed approach, however. The gradient of the

0.94

0.95

0.96

0.97

0.98

0.99

1

0 20 40 60 80 100 120 140

co
rr

t U j/D

DiscF2
DiscF4
DiscF8
DiscF16

(a)

0.001

0.01

0.1

1

0 20 40 60 80 100 120 140
de
v

t U j/D

DiscF2
DiscF4
DiscF8
DiscF16

(b)

Figure 8: The correlation/deviation of the discrete adjoint gradient without recomputation of flow fields for different saving frequencies with/from
the exact gradient for case LES3D. As in the continuous case (see figure 4) the gradient isn’t accurate for saving frequencies of 8 and higher.

In the cases DiscF2, DiscF4, DiscF8and DiscF16 the discrete adjoint formulation was used, but the recomputation282

was avoided by saving/loading the flow field every 2nd, 4th, 8th and 16th RK integration and interpolating in-between283

with a third order accurate interpolation scheme. Note that without recomputation the discrete and continuous adjoint284

approach are comparable in terms of computational time. The results are shown in figure 8. The cases DiscF2 and285

DiscF4 can be found to be very accurate, even more accurate than the continuous cases ContF2 and ContF4, which is286

revealed by a comparison of figures 4 and 8. Additionally, the discrete adjoint without recomputation does’nt show the287

drop in accuracy connected with the boundary treatment of the continuous cases. The accuracy drops significantly for288

case DiscF8, similarly to case ContF8. Nevertheless, the discrete approach is still more accurate than the continuous.289

In case ContF16 the flow field reconstruction is obviously not sufficient to yield valid adjoint information.290

A very simple strategy that reduces the hard disk IO by a factor of two is to save the flow fields in single preci-291

sion, albeit being calculated in double precision. To check the validity of this approach two further test cases were292

performed, called DiscSgl and ContSgl for the discrete and continuous adjoint, respectively. As expected, the inac-293

curacies introduced by the continuous adjoint approach, outweigh the error introduced by saving in single precision.294

Therefore, drop in accuracy be observed in case ContSgl compared to case ContF4. An drop in accuracy could be295

observed for case DiscSgl. Nevertheless, cases DiscSgl and Ref still agree up to six decimal digits and thus sav-296

ing in single precision is a reasonable approximation. Because of only minor differences between these investigated297

simulations, the graphs have been omitted.298

4. Optimization299

Section 3 showed that the continuous adjoint, though not exact, is capable of giving quite accurate gradient infor-300

mation. Thus the question arises of how the inaccuracies, introduced by the continuous adjoint, effect the optimization301

procedure. Furthermore, we want to know if the additional cost for obtaining the discrete adjoint (usually more com-302

plex implementation/ recomputation of flow fields) is worth the effort. For this purpose several optimizations were303

performed for cases DNS2D- and the ELES3D using either the continuous or discrete adjoint approach. These two304

cases have been chosen because the lack of a third spatial dimension in case DNS2D and the lower resolution in case305

ELES3D makes them computationally inexpensive and thus enables one to perform many optimization iterations. It306

should be noted that the norm of the gradient showed large fluctuations during the optimization and no reliable reduc-307

tion of the gradient norm could be observed. This indicates that no convergence to an extremum could be achieved308

and the point where the iteration was stopped was chosen arbitrary. Zur Not haette ich da auch noch ein Bild zu309

14

Figure 5. The correlation coefficient of approximations to the dis-
crete adjoint gradient with the “exact” gradient for case LES3D.
The approximations were obtained by using different data storage
frequencies of the primal solution. The number indicates the num-
ber of Runge-Kutta time steps after which data storage takes place.

discrete adjoint solution is depicted in figure 5. The dif-
ferent curves indicate solutions obtained by using different
data storage frequencies of the primal flow solution. This
approach was motivated by the large amount of data of the
primal equations which needs to be stored to advance the
adjoint. Instead of using checkpointing strategies, we used
a third-order accurate interpolation scheme to determine the
fields at time steps within each time interval. A recomputa-
tion of the flow fields was performed for the reference case,
with details to be reported elsewhere. A very accurate solu-
tion is obtained if the data storage freqency is equal and be-
low 4 (cases DiscF2, DiscF4), thereafter, the performance
deteriorates. A closer inspection by using the power spec-
trum of the different flow variables revealed, that increasing
parts of the spectrum which don’t just correspond to numer-
ical white noise are neglected (not shown). For a data stor-
age frequency of 8, for example, the neglected modes car-
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ried less then one percent of the total power, indicating, that
an accurate reconstruction of the flow fields is of paramount
importance.

For three-dimensional optimization simulations, the
performance of the discrete and continuous adjoint is simi-
lar, as can be seen in figure 6, for example. Since these op-
timization methods only converge to local instead of global
minima, the initial conditions may determine the subse-
quent performance. As this case indicates a stronger re-7.2. Optimization Using Exact and Inexact Adjoint 81
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Figure 7.7: Cost-functional over LBFGS-iterations for case ELES3D involving a short control

interval. Only every second iteration is shown. The optimization was performed with the con-

tinuous and the discrete adjoint approach. Additionally, a discrete optimization was performed

starting with a control obtained by the continuous optimization. Both cases successfully reduce

the cost functional.

more step lengths until a sufficient decrease could be obtained using the continuous
adjoint. Nevertheless, the reduction achieved by the continuous optimization is re-
markable considering the fact that the gradient contains no reliable information over
approximately a quarter of the simulation interval. Interestingly, both cases fail to
significantly reduce the cost functional for times t < 80. This is discussed further in
section 7.3.

7.2.2. Three Dimensional LES

Next, an optimization is performed for case ELES3D using the discrete or continuous
adjoint approach. For the chosen control horizon of ∆t = 70 (2400 RK-iterations)
the correlation coefficient between the discrete and continuous gradient does never
drop below 0.995. Thus, indicating a very high accuracy of the continuous adjoint.
The cost functional is plotted over LBFGS iterations for cases ContF2 and Ref in
figure 7.7. Surprisingly, the continuous optimization performs better in terms of cost
functional reduction, though the difference is only marginal. For further investi-
gation of this observation the discrete optimization was also based on the solution
obtained during the continuous optimization after 30 iterations. This optimization
run is shown in figure 7.7 and it becomes apparent, that there is only a negligible
difference between the continued discrete and the continuous optimization. This be-
havior supports the conjecture, that the differences observed in figure 7.7 are due to
the high dimensionality of the control space, and thus the complex appearance of the
cost functional surface. This might lead to a different optimization path by chance
which doesn’t ,however, demonstrate a significant advantage of the continuous adjoint
approach. Overall it can be summarized that the performance of the optimization is
comparable for the continuous and discrete approach. This was to be expected as the
continuous gradient is quite accurate for case ELES3D and short control horizons.

Figure 6. Reduction of the cost-functional as a function of the
optimization iterations for case ELES3D.

duction for the continuous case, the discrete solution was
restarted by making use of a flow field obtained from the
continuous adjoint optimization (“+”-symbols). As ex-
pected, both approaches perform similar then, emphasizing
the importance of the choice of the initial condition in ob-
taining a strong minimum.

It was recognized, too, that the sound reduction be-
came smaller for the three-dimensional case compared
to DNS2D. Two different LES simulation with coarse
(ELES3D) and fine resolution (LES3D) and a DNS were
performed because of that, to identify possible modeling
errors due to the LES approach. However, by investigating
figure 7 we observe a tendency of decreasing performance
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effect the sound in the farfield.

0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

1

0 2 4 6 8 10 12 14

!

optimization iteration

ELES3D
LES3D
DNS3D
DNS2D

Figure 7.11: Optimization runs with the LBFGS-Wolfe09 scheme for cases ELES3D, LES3D

and DNS3D. For better comparison the cost function values are normalized with the initial

values. The efficiency of the optimization decreases with increasing resolution.

increasing resolution. An interpolation point for the control was set every second RK
iteration for cases DNS2D, ELES3D and LES3D and every third RK iteration for
case DNS3D. Due the CFL criteron the timestep decreases with increasing resolution
and consequently the number of RK iterations increases, too. Thus, the number of
interpolation points in time increases with resolution leading to an increased control
space dimension.

Figure 7. Reduction of the cost-functional normalized with its
starting value as a function of the optimization iterations for the
discrete adjoint simulations. The reduction clearly decreases with
increasing dimension of the control.

of the control with increasing resolution and therefore di-
mension of the control space, due to the fact that the area of
application of the control was the same for all cases. The
two-dimensional case DNS2D has a much smaller control
space dimension due to the missing third dimension and the
larger time-steps and shows a much stronger cost functional
reduction. Additionally, the complexity of the turbulence
is reduced, which is revealed in the more coherent struc-
tures and is linked to the missing vortex-stretching mech-
anism. Therefore, a test was performed by updating the
control only at every nth grid point in the spatial directions
as well as at every δ timesteps and interpolating the con-
trol in between using a Catmull-Rom spline (Marschner &
Lobb, 1994). As a consequence, it’s not further possible to
influence the whole spectrum using this type of approach,
with the hope of better control efficiency due to a reduc-
tion of the control dimension. It is clearly seen in figures
8 and 9, that the cost functional reduction is indeed better
when reducing the control space dimension for the LES and
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Figure 7.13: Optimizations using the LBFGS-Wolfe09 scheme for cases (a) ELES3D and (b)

DNS3D. Different gaps between interpolation points in spatial and temporal directions have

been used. The efficiency of the optimization can be increased by reducing the number of

control variables.

space dimension for both cases. No significant difference can be observed between
case gap333F3 and gap555F8, possibly indicating that a balance is reached between
controlability and control space reduction.

Figure 8. Comparison of the cost functional plotted over the op-
timization iterations for case ELES3D, using two different cases of
data reduction. Here, gapαβγFδ refers to a simulation using every
αth, β th and γth grid point and every δ th time step for application
of the control.

DNS. An additional case using only every 5th point and ev-
ery 8th time step shows no further improvement compared
to using every third point and time step. This indicates,
that a balance between control space reduction and con-
trollability was reached, here. Nevertheless, a reduction as
the one observed for case DNS2D is still not reached. The
LES performs better than the DNS, however, the effective
Reynolds number of the large-eddy simulations is lower due
to the increased viscosity as a consequence of the subgrid -
modelling.
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Figure 7.13: Optimizations using the LBFGS-Wolfe09 scheme for cases (a) ELES3D and (b)

DNS3D. Different gaps between interpolation points in spatial and temporal directions have

been used. The efficiency of the optimization can be increased by reducing the number of

control variables.

space dimension for both cases. No significant difference can be observed between
case gap333F3 and gap555F8, possibly indicating that a balance is reached between
controlability and control space reduction.

Figure 9. Comparison of the cost functional plotted over the
optimization iterations for case DNS3D, using different cases of
data reduction. For the notation see figure 8.

Conclusion
Adjoint control simulations to reduce the sound emission in
the near farfield of plane jets were performed using two- and
three-dimensional DNS and LES. The continuous and dis-
crete adjoint equations were derived and used for obtaining
the gradient, needed to reduce the cost functional by mak-
ing use of an LBFGS method with a Wolfe line-search. As
the continuous adjoint is subject to inconsistencies due to
possible differences in the discretization and boundary con-
ditions of the adjoint equations, which are often treated nu-
merically different from its corresponding primal equations,
a comparison between the continuous and discrete adjoint
was performed. The discrete adjoint, which is computed up
to machine precision, provided the “exact” gradient to com-
pare with. Using various approaches to calculate the bound-
ary conditions for the continuous adjoint, the necessity for
non-reflecting boundary conditions (NRBC) together with
strong sponge regions for the continuous adjoint became
obvious. As the NRBCs only allow waves approaching the
boundary normally to be transmitted, reflections of oblique
waves occur and lead to sensitivities in this region, result-
ing in the control trying to influence the boundary. To avoid
such problems for the discrete adjoint, a strong sponge for
the primal was used to reduce the sensitivities there, the
difference in performance of both methods was, however,
small. With increasing resolution and therefore an increas-
ing range of scales and control space dimension, a decrease
in control efficiency could be observed. A similar observa-
tion for channel flow with increasing Reynolds number was
found by Collis et al. (2000). This increased complexity re-
sults in problems, since the gradient based optimization pro-
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cedures usually don’t converge to a global, but local mini-
mum. This could be clearly seen for the performed discrete
adjoint optimization using LES, which performed worse in
one case than the continous adjoint approach. Furthermore,
the increased control dimension with increasing resolution
could be indentified, as suspected, to be one reason for the
decreased control efficiency. Using only a limited number
of points and timesteps for the control field in addition to
interpolation in between, the efficiency could be drastically
increased. A more detailed investigation will be presented
at the conference, nevertheless, the results show that further
research is still necessary to identify possibilities to reduce
the control dimension and to make use of global optimiza-
tion procedures.
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