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ABSTRACT

We investigate the effects of superhydrophobic surface
carrying streamwise micro grooves on the flow dynamics
and the resultant gain in the flow rate in a fully developed
turbulent channel flow under a constant pressure gradient.
The superhydrophobic surface is modeled as a flat bound-
ary with alternating no-slip and slip conditions, and a series
of direct numerical simulations is performed with system-
atically changing the spanwise periodicity of the stream-
wise grooves. It is observed that the alternating no-slip and
slip boundary conditions cause a spanwise inhomogeneity
of the Reynolds shear stress near the superhydrophobic sur-
face, and consequently generate Prandtl’s second kind of
secondary flow characterized by coherent streamwise vor-
tices. Accordingly, the instantaneous turbulent flow is de-
composed into the spatial-mean, coherent and random com-
ponents. The detailed turbulent statistics of the three com-
ponents are obtained and the effect of the secondary flow on
the resultant drag reduction is discussed.

INTRODUCTION

The reduction of skin friction drag in turbulent flows
is an important issue in efficient use of available energy re-
sources. One interesting option for water flows in this re-
spect is the use of superhydrophobic surfaces. These sur-
faces consist of a thin-film hydrophobic coating with a cer-
tain roughness pattern. Air bubbles that are entrapped in the
cavities of the roughness pattern can locally provide slip-
like properties. This results in a significant reduction of the
skin friction drag compared to a smooth and fully wetted
water-solid interface.

Philip (1972) modeled the superhydrophobic surface as
an alternating boundary condition between no-slip and free-
slip using the Navier boundary condition for solid-fluid in-
terfaces on microscopic scale. By averaging over the entire

surface, an average slip velocity at the wall, uy, is obtained:

du
us = I (aiy)w (D)

where /; denotes the effective slip length relating the slip
velocity and the velocity gradient at the wall (subscript w).
For Stokes flow through a two-dimensional channel with a
superhydrophobic roughness pattern consisting of longitu-
dinal or transversal grooves, Philip (1972) derived analyti-
cal solutions of the slip velocity and the resultant drag re-
duction: the effective slip length over streamwise grooves
is exactly twice as large as that over transverse ones.

Considering that most engineering flows are turbulent
such that the friction drag is significantly increased com-
pared to laminar flows, the potential application of a su-
perhydrophobic surface to turbulent flow for drag reducing
purposes is of great interest. First experiments by Daniello
et al. (2009) have demonstrated that the superhydropho-
bic surface turns out to be quite promising in the turbulent
regime. They found significant drag reduction with a slip
length much smaller than the channel height. In laminar
flows, on the contrary, the effective slip length has to be
of the same order of magnitude as the channel height to
achieve a significant drag reduction rate.

In order to analyze the properties of a turbulent flow
field above superhydrophobic surfaces we carry out direct
numerical simulations (DNS) of turbulent channel flows
where the superhydrophobicity on top and bottom walls
are modeled by alternating local free-slip and no-slip wall
boundary conditions which resemble the boundary condi-
tions of a surface structure with air-filled grooves in stream-
wise direction. In previous studies superhydrophobic sur-
faces have often been represented with a uniform slip length
over a flat fluid-solid boundary (Min et al. 2004, Fukagata
et al. 2006)

This assumption is valid only when the typical length-
scale of the surface structure is sufficiently smaller than
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that of near-wall turbulence. With the introduction of spa-
tially varying boundary conditions, we observe significant
inhomogeneity of the Reynolds shear stresses near a super-
hydrophobic surface. This results in the Prandtl’s second
kind of secondary flow. This phenomenon cannot be re-
produced by the conventional uniform slip length approach,
and has not been reported in previous simulation where
alternating no-slip/free-slip boundary conditions are em-
ployed (Martell et al., 2009).

NUMERICAL PROCEDURE

We carry out direct numerical simulations of a fully
developed channel flow under a constant pressure gradient
with the friction Reynolds number set at Re; = u;6/v =
180, where u;, 6 and v are the friction velocity, the channel
half depth height and the kinematic viscosity of the fluid,
respectively. The applied boundary conditions and the com-
putational domain are illustrated in figure 1, where x, y and
z correspond to the streamwise, wall-normal and spanwise
directions, respectively. The flow is bounded by alternating
no-slip free-slip boundary conditions on the bottom (y = 0)
and top wall (y = 28), while periodic boundary conditions
are applied in the streamwise and spanwise directions.

For an incompressible Newtonian fluid, the flow has
to satisfy the continuity and Navier-Stokes equations in the
following form:

L—0. )

«Dui  dp* L 0%}

Dt 8)6? + 8x;2.

3

where p* is the static pressure and p* is the dynamic
viscosity. Throughout this paper, the asterisk denotes
a dimensional quantity. Otherwise quantities are non-
dimensionalized by the friction velocity, «}, and the kine-
matic viscosity, v*, such that u = u* /uj and x; = x}uj§/v*
(wall units). Note that, as the pressure gradient is kept con-
stant during the simulation, u; and Re; are constant conse-
quently. By doing so, the gain due to a superhydrophobic
surface is measured in terms of an increase in flow rate com-
pared to a turbulent channel flow with purely no-slip walls
at top and bottom. This approach is chosen since the alter-
native setup in which a constant flow rate is prescribed will
lead to very low friction Reynolds numbers for the large
drag reduction that is expected with superhydrophobic sur-
faces (Busse and Sandham, 2012). Potential changes in the
turbulence properties due the presence of superhydrophobic
surfaces might be masked through this Reynolds number ef-
fect.

As numerical scheme, a fractional step method on a
staggered grid is used. For spatial discretization a second-
order finite difference method is used while for temporal
discretization, the second order Adams-Bashforth method
is applied for the convection terms and the Crank-Nicolson
method is applied for the viscous terms.

The number of grid points employed is (Ny,Ny,N;) =
(128,129,256) and the domain width is set to (Lf,L}) =

X7
(2.5w6*, wd*) in all present cases. This results in the grid
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Figure 1. Illustration of the computational domain and
the instantaneous velocity field, including applied boundary
conditions
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Figure 2. Schematic of flow over a hydrophobic surface
and the phase ¢ with respect to the surface structure. The
solid fraction is given by ® = d/L

resolution of Ax = 11.0 in streamwise and Az = 2.2 in span-
wise direction, while the minimum of the wall-normal grid
spacing is Ay, = 0.1. All statistics presented in the fol-
lowing are obtained for an integration time of r = 10440
with a time step of Ar = 0.036.

The geometry of the superhydrophobic surface is char-
acterized by the periodicity L as shown in figure 2 and the
solid fraction ® which is defined as ® = d/L. The solid
fraction P is kept constant at @ = (0.5 while the geometric
wave-length, L, is varied in order to investigate the impact
of groove width on the drag reduction effect. In comparison
to the no-slip wall the superhydrophobic surface leads to an
increase of the bulk flow rate. In contrast, for laminar flow
conditions this change of the bulk flow rate is defined exclu-
sively through the resulting average slip velocity at the wall,
ug, which can be linked to /5 in accordance with Eq. (1). The
effective slip length can be predicted analytically for lami-
nar flow conditions (Philip, 1972) and is obtained as a result
of the DNS in turbulent flows.

DECOMPOSITION OF VELOCITY FIELD

Due to the periodically varying boundary condition in
spanwise direction, it is likely that the statistical features of
the turbulent velocity field show a similar periodicity. Ac-

periodic
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cordingly, a phase averaging operator leading to a triple de-
composition is introduced as
n) ,t) dxdt, (4)

£ (0) = ;ﬁl//f(ﬂ (L+

where f is an arbitrary variable and a function of space and
time, while ¢ is a phase with respect to the periodic struc-
ture as shown in figure 2 and N is a number of periods in
the computational domain. Averaging (f) over ¢ results in
the spatial mean:

- 1

2
F0) =52 [ () (0.0, )

2 Jo

Accordingly, coherent fluctuations are defined as

F(0,y)= (/) (9,y)— (). (6)

Thus, any flow quantity can be decomposed as follows:

Fey,z,0) = () (9,9)+ " (x,3,2,1)
=fO)+F0.y)+ " (xyz1), (D

where a quantity with a double prime represent the devia-
tion from the phase average, and is referred to as random
fluctuation throughout this paper. We also define the overall
fluctuation as the deviation from the spatial mean:

fleyzr) = flxy,z.0) = F(y)
= F0,0) + 1" (x,3.2,1). ®)

This is equivalent to the definition of a fluctuating com-
ponent in the conventional Reynolds averaging for no-slip
walls with a homogeneous spanwise direction. In the case
of the hydrophobic surface with streamwise grooves, the
overall fluctuations are given by a sum of coherent and ran-
dom fluctuations as shown in (8). Accordingly, the corre-
lation of two arbitrary quantities f and g can be obtained
as

g =fg+1"g" ©

RESULTS
Increase in Flow Rate

In general, the presence of a superhydrophobic surface
with streamwise grooves increases the bulk mean velocity
compared to a turbulent channel flow with no-slip walls at
the same friction Reynolds number and constant channel
height. In figure 3 the corresponding gain in flow rate is
plotted as a function of the different geometric wave-length,
L, of the grooved surface structure. The gain strongly in-
creases with increasing L initially but levels off for values
above L ~ 100. For the biggest L considered, even a slight
decrease in the resulting flow rate is observed compared to
the second largest wave-length. This apparent limit of the
achievable increase of flow rate is particular for turbulent
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Figure 3. Gain in terms of an increase in U, compared to
the smooth reference channel

flows, since for laminar flow conditions the effective slip
length is proportional to L as (Philip,1972)

%{:%log[oos{%(l—@)}} 10)

Velocity Statistics over Superhydrophobic
Surface

Mean Velocity Profile The reason for the up-
per limit in the achievable flow rate becomes visible when
the velocity profiles for different L are analyzed. These are
shown in figure 4. The general shape of the velocity pro-
file found above the superhydrophobic walls is maintained
with an offset at the wall that corresponds to the slip veloc-
ity. If the profiles are corrected by this offset they collapse
within the viscous sublayer (as expected for DNS with con-
stant pressure gradient). In the channel center, however, the
relative velocity decreases with increasing L indicating ad-
ditional turbulent losses. This trend is in agreement with the
results for a spatially uniform slip length (Min et al. 2004,
Fukagata et al. 2006) where it is found that spanwise slip
leads to an enhancement of turbulence, and thus reduces the
positive effect of streamwise slip conditions.

Reynolds Stresses The normal components of
the Reynolds stress tensor are shown in figures 5 through 8
following the decomposition defined in Eq. (7). The coher-
ent contribution to the normal stresses is naturally largest
for the streamwise component, for which 2 increases with
increasing L. This increase is due to the fact that higher ve-
locities can develop along a wider groove, i.e. a free-slip
surface. The coherent component of the streamwise veloc-
ity fluctuations decreases with increasing wall distance. The
periodic contributions to # and W? are negligibly small for
small L but increase for the two largest wave-lengths, sug-
gesting the presence of a secondary flow. This observation
will be discussed in more detail later.

The random contributions to the normal stresses qual-
itatively show the same trends as the ones for flows over

2

no-slip walls. Non-zero values of " and w2 at the wall

arise from the no-shear condition while 2 has to approach
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Figure 4. Mean velocity profile a) with and b) without slip
velocity. thick solid line: solid wall, broken line with sym-
bols: superhydrophobic surface. circle: L = 35.2, diamond:
L = 70.4, up-pointing triangle: L = 140.8, down-pointing
triangle: L = 281.6, right-pointing triangle: L = 563.2

zero due to non-permeability of the boundary. In general an
increase of the peak value and a slight shift of its location
towards smaller wall distances can be observed. Min et al.
(2004) report decreasing peak values of the normal stresses
for combined streamwise and spanwise slip. This difference
is most likely caused by the different simulation strategies:
the pressure gradient is fixed in the present work while Min
et al. (2004) run DNS at constant flow rate. Therefore, the
power input into the flow (i.e., the product of flow rate and
pressure gradient) changes in the opposite direction when
drag reducing superhydrophobic surfaces are introduced. It
decreases for constant flow rate while it increases for con-
stant pressure gradient. The decrease or increase in the nor-
mal Reynolds stresses reflects this modification of the en-
ergy injection rate into the flow.

The Reynolds shear stresses for different wave lengths
are plotted in figure 8. The total shear stress generally in-
creases with increasing L (which is consistent with the ob-
served decrease of the relative mean velocity in figure 4 b)).
However, a saturation of this effect can be observed. The
coherent contribution, which indicates the presence of a sec-
ondary flow structure, is relatively smaller than the random
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Figure 5. Variance of streamwise velocity fluctuation a)
coherent, b) random components and c) their sum. The no-
tations of lines and symbols are the same as those in figure
4.

one but shows the interesting fact of a reversed sign for the
two largest wave-lengths: negative values of —iiv are ob-
served for these configurations.

Secondary Flow

Secondary flow structures of Prandtl’s second kind, i.e.
in the form of streamwise vortices, are observed for a ge-
ometric wave length of L > 70.4 in the present investiga-
tion. Figure 9 shows the contour of the phase averaged
streamwise velocity profile along with streamlines for the
phase-averaged in-plane velocities for two different L. For
a wave length of L = 140.8 a counter-rotating secondary
flow structure is clearly visible which extends roughly one
wave-length in wall-normal direction. To our knowledge,
the formation of such secondary flow structures over super-
hydrophobic surfaces has not been reported before. How-
ever, it is known from Goldstein et al. (1998) that similar
secondary flows occur in turbulent flow over riblets if a cer-
tain riblet spacing is exceeded.

In order to further investigate the mechanism and the
dynamics of the secondary flow, we consider the transport
equation for the phase averaged streamwise vorticity (@y):

224 ) 2420
32< ! //> aZ( /! //> 32< /" //> 82< ! //>
dy? dydz + dydz + 272
1 (82 (o) 82<wx))
+ .

Re; \ 0y? 072

an
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Figure 6. Variance of wall-normal velocity fluctuation a)
coherent, b) random components and c) their sum. The no-
tations of lines and symbols are the same as those in figure
4.

The terms on the left-hand-side represent the convection of
(@y) due to the secondary flow. The first four terms on the
right-hand-side are production terms of (@), while the last
term represents the viscous diffusion of (@,). Note that the
production terms have non-zero values only when the no-
slip and no-shear surfaces are resolved. Therefore, the ef-
fective slip model introduced by Min et al. (2004) and Fuk-
agata et al. (2006), which is homogeneous in the spanwise
direction, does not lead to the formation of secondary flow.

Figure 10 shows the distribution of (®,) and also the
sum of the four production terms of Eq. (11) for the groove
widths L = 70.4 and L = 281.6. For L = 70.4, the phase
averaged flow moves towards the boundary in the middle
of the free-slip region, and moves away from the wall in
the middle of the no-slip region (see, figure 10 a)). In fig-
ure. 10 b), the distribution of (@) agrees quite well with the
locations where (@) is produced according to Eq. (11), in-
dicating that the inhomogeneity of the Reynolds stress is the
primary reason for the generation of the secondary flow. We
note that —a? (w"v") /9y? is dominant among the four pro-
duction terms of (wx). it is almost two orders of magnitude
larger than the other terms. For the groove width L = 281.6,
a vortical structure can be observed which is located further
away from the wall and possesses the opposite rotational di-
rection (see, figure. 10 c¢)). Namely, a downwelling motion
occurs over the no-slip area, while the upwelling is located
above the free-slip area. This reversed vorticity leads to the
change of sign for the coherent part of the Reynolds shear
stress as observed in figure 8.

While the secondary motion is significantly differ-
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Figure 7. Variance of spanwise velocity fluctuation a) co-
herent, b) random components and c) their sum. The nota-
tions of lines and symbols are the same as those in figure
4.

ent for the two L considered, the distribution of the pro-
duction term is nearly unchanged by L as shown in fig-
ures 10 b) and d). In both cases it is mainly determined
by —2 (wv") /dy*. The absolute value of the production
term is largest close to the boundary between free-slip and
no-slip regions. Its spatial extent in the spanwise direction is
around Az ~ 30 and almost independent of L. For L =70.4
the two neighboring secondary vortices with opposite sign
force the flow upward above the no-slip area and downward
over the free-slip region. For L = 281.6 the same produc-
tion mechanism acts at the interface between the no-slip and
the free-slip wall. In this case, however, the extension of the
locally induced vortices (which can be seen in figure 10c) is
much smaller than their spanwise separation. Thus they do
not interact directly but induce an additional vortical motion
at larger wall distance as illustrated in figure 11.

CONCLUSIONS

DNS of turbulent flows over superhydrophobic sur-
faces where the surface structure of streamwise oriented
grooves is modeled as an alternating no-slip and no-shear
boundary conditions in the spanwise direction show the oc-
currence of secondary flow structures. Interestingly, the ro-
tation direction of the secondary vortices becomes reversed
once the spanwise period of superhydrophobic surface is
above L =~ 70 in the friction unit. This causes a consider-
able change in the Reynolds shear stress, so that affects the
resultant increase in the bulk mean velocity. The present re-
sults indicate that the precise modeling of turbulent dynam-
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Figure 8. Reynolds shear stress profile a) coherent, b) ran-
dom components and c) their sum. The notations of lines
and symbols are the same as those in figure 4.
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Figure 9. Contour of phase averaged streamwise velocity
normalized with U, including streamlines in the y-z-plane,
left: L =35.2, right: L =140.8

ics over superhydrophobic surfaces is necessary in order to
predict the drag reduction effect accurately.
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