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ABSTRACT
To generalize the well-known spanwise-oscillating-

wall technique for drag reduction, non-sinusoidal oscilla-
tions of a solid wall are considered as a means to alter the
skin-friction drag in a turbulent channel flow. A series of
Direct Numerical Simulations is conducted to evaluate the
control performance of nine different waveforms, in addi-
tion to the usual sinusoid, systematically changing the max-
imum wave amplitude and the period for each waveform.

The turbulent average spanwise motion is found to co-
incide with the laminar Stokes solution that can be con-
structed, for the generic waveform, through harmonic su-
perposition. A newly defined penetration depth of the
Stokes layer is then used to build a simple tool that allows
predicting turbulent drag reduction and net energy saving
rate for any waveform.

Among all the cases considered, the sinusoid at opti-
mal amplitude and period is found to yield the maximum
net energy saving rate. However, when the wave amplitude
and period deviate from the optimal values, other waves are
found to perform better than the sinusoid. This is poten-
tially interesting in view of applications, where a particu-
lar actuator limitations might preclude reaching the optimal
operating conditions for the sinusoidal wall oscillation. It is
demonstrated that the present model can predict the locally
optimal waveform for given wave amplitude and period, as
well as the globally optimal sinusoidal wave.

INTRODUCTION
The efficient use of energy in systems where a rela-

tive motion between a solid wall and a fluid takes place is

perhaps the most important driving factor that supports the
current research effort into aerodynamic drag reduction.

We consider here skin-friction turbulent drag. Existing
open-loop techniques provide higher drag reduction than
passive methods while being less complex than feedback-
control methods. In particular, open-loop techniques that
rely on the spanwise forcing of the near-wall turbulent flow
have been shown to yield large drag reduction and inter-
estingly positive energy budgets in numerical simulations
(Quadrio, 2011), and first laboratory experiments have al-
ready been carried out (Auteri et al., 2010; Gouder, 2011;
Choi et al., 2011). The present paper deals with the simplest
and well-known spanwise oscillating-wall technique.

Most existing open-loop control strategies assume a si-
nusoidal waveform as control input. On the other hand,
when trying to verify these control strategies in experi-
ments, various constraints are placed on the properties of
a control input by the used actuators. Hence, it is of key im-
portance to identify the optimal waveform to achieve best
control performance: this is the aim of the present paper.

As a starting point, we select a set of waveforms and
comparatively study, via several numerical experiments,
how the drag-reduction and energetic performances of the
oscillating wall depend on the waveform as well as on the
oscillation amplitude and period. Guided by our numerical
experiments, we then aim at obtaining results of more gen-
eral validity, so that a predictive tool for the control perfor-
mance of non-sinusoidal wall oscillations can eventually be
developed. In this process, we take advantage of the laminar
solution that exists for the spanwise flow alone (the Stokes
oscillating boundary layer), by extending it to a generic (pe-
riodic) temporal waveform.
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THE NUMERICAL EXPERIMENTS
The performance of non-sinusoidal spanwise wall os-

cillations is assessed using Direct Numerical Simulation
(DNS) of a turbulent channel flow. Discretization is spectral
(Fourier) in the homogeneous x and z directions, whereas
compact, explicit fourth-order finite differences are used
in the wall-normal y direction. Time advancement is
carried out with a partially implicit, third-order Crank–
Nicholson/Runge–Kutta scheme.

The Reynolds number of the reference simulation with-
out wall oscillation is Re =Ubh/ν = 3173, where Ub is the
bulk velocity, h is half the channel gap and ν is the kine-
matic viscosity of the fluid. This corresponds to a value
of the friction-based Reynolds number Reτ = 200. Unless
otherwise specified, h and Ub are chosen as length and ve-
locity scales. The computational domain is 9.6h×2h×4.8h
along x, y and z directions, with 192×128×192 grid points
/ modes respectively. Every simulation is started from the
same initial condition of fully developed turbulent channel
flow without wall oscillation. When the wall moves, drag
reduction takes place. Since the flow rate is kept constant,
the space-averaged streamwise pressure gradient and the
friction drag decrease. The total integration time for each
simulation is 95 wash-out time units, where the wash-out
time unit is defined as Lx/Ub. This value corresponds to
10,000 viscous time units. After the beginning of the oscil-
lating movement of the walls at t = 0, a certain time interval
is needed for the flow to reach the new equilibrium state.
Time average is hence started only after the initial transient
of the flow, by simply discarding the first 25% of the entire
time integration interval.

Various waveforms of the temporal oscillation of the
wall are examined. We consider spanwise wall velocities
Ww(t) varying in time as

Ww(t) =Wm fα
( t

T

)
, (1)

where fα (with α = a, . . . , j) are ten periodic functions of
unit period with values ranging from −1 to 1. All the con-
sidered oscillations thus have period T and amplitude Wm.
It is worth mentioning that, as Quadrio & Ricco (2004)
pointed out, in flow control with wall oscillation, a third pa-
rameter besides oscillation period and amplitude enters the
picture, i.e. the maximum displacement of the wall during
the oscillation cycle. If the wall oscillates sinusoidally in
time, however, only two of these three parameters are truly
independent, and the maximum displacement can be eas-
ily deduced once period and amplitude are known. Hence,
considering different waveforms, we can open up the third
dimension in the parameters space, and investigate the be-
havior of the oscillating wall when the temporal waveform
is considered as a free parameter, and the constraint of sinu-
soidal oscillation is lifted. The maximum displacement of
the wall from the reference position during the oscillation
cycle is

Dm = 2
∫ T/2

0
Ww(t)dt. (2)

The first waveform fa is the usual sinusoid

Ww(t) =Wm sin
(

2π
t
T

)
(3)
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Figure 1. Temporal waveforms of the wall oscillation con-
sidered in the present work. The following symbols are used
throughout the paper for the different waveforms: (a) (4),
(b) (�), (c) (∗), (d) (+), (e) (�), ( f ) ( ), (g) (J), (h) (I),
(i) (N) and ( j) (H).

for which Dm = 2WmT/π . The other waveforms are
sketched in figure 1 (additional waveforms have been con-
sidered in this work but are not discussed here). Despite all
the possible choices, the periodic functions fα which have
been included in this study have been chosen as being rep-
resentative of the different features which may characterize
non-sinusoidal oscillations in practice. The waveforms fα
allow for discontinuities in velocity and acceleration, large
and small accelerations, phase shifts and different fractions
of the period with constant velocity and even zero velocity.

For each waveform, the oscillation parameters Wm and
T are varied around the values T+

0 and W+
m,0 (the superscript

+ as customary implies non-dimensionalization in viscous
units, where the velocity scale is the friction velocity uτ of
the reference flow) that yield the maximum net efficiency
for the sinusoid. This particular condition was carefully de-
termined by Quadrio & Ricco (2004) and corresponds to
T+

0 = 125 and W+
m,0 = 4.5. We consider a parametric set of

variations from this basic case, by changing W+
m and T+ to

values twice and one half of the optimal value.

FLOW CONTROL PERFORMANCE
The performance of the oscillating wall as a flow con-

trol technique is analyzed following Kasagi et al. (2009) in
terms of three dimensionless indicators: the drag reduction
rate R, the power input due to the applied control, Pin and
the net energy saving rate, S = R−Pin.

Figure 2 describes how R, Pin and S are affected by
non-sinusoidal temporal waveforms, for two of the tested
waveforms. Notwithstanding the marked quantitative dif-
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Figure 2. Power consumption rate Pin (top), reduction of
pumping power R (center), and net energy saving S (bottom)
as a function of W+

m and T+ for two selected waveforms, (c)
and (g), see figure 1 for reference. The color coding goes
from maximum values, red, to minimum values, blue.

ferences among the considered waveforms, both Pin and R
qualitatively behave in the (T,Wm)-space like the one re-
ported in Quadrio & Ricco (2004) for the sinusoidal case.
The power consumption Pin for each value of T increases
with Wm. For constant Wm, Pin decreases with increasing T .
The drag reduction rate, R, always presents its maximum at
the intermediate period T+ = 125, and it increases mono-
tonically with increasing Wm. Overall, the specific wave-
form fα enters the picture by affecting the quantitative val-
ues of Pin and R. For example, waveform (b) (not shown)
leads to much larger Pin than the sinusoid while yielding a
larger R than the sinusoid. However, the increase in Pin out-
weighs the one in R such that the net saving, S, is reduced in
comparison to the sinusoid. Decreasing values for Pin and
R are observed for the cusp-like waveform ( f ) which also
results in a worse S compared to the sinusoid. In fact, all
the considered waveforms yield a best S which is smaller
than the S obtained with sinusoidal oscillations at the opti-
mal conditions T+

0 = 125 and W+
m0 = 4.5, i.e. S0 = 0.078.

For nearly all cases considered the balance between R and
Pin is such that S> 0 at low Wm, whereas at larger Wm higher
values of R but even larger values of Pin are obtained, such
that S is reduced. In general, most of the waveforms show a
maximum of S at intermediate values of (T,Wm) which are
close to those of the sinusoidal case.

GENERALIZED WAVEFORM
The alternating boundary layer that is created by a si-

nusoidally oscillating wall in a quiescent fluid is described
by the solution of the so-called Stokes’ second problem
(Schlichting & Gersten, 2000). It has been shown that
this solution also describes well the spanwise component
of a turbulent channel flow modified by the oscillating wall,
when properly averaged in space and considered as a func-
tion of the oscillation phase. Moreover the analytical ex-
pression wSt(y, t) of the laminar Stokes layer has proven
useful for the prediction of practically important quanti-

ties, like Pin and R, for turbulent flows over oscillating walls
(provided that the oscillating period does not largely exceed
its optimal value). The equivalence between wSt(y, t) and
the space-mean, phase-averaged turbulent profile 〈w〉(y,τ),
first found for the pipe flow by Quadrio & Sibilla (2000),
implies that the spanwise space-averaged momentum equa-
tion reduces to a diffusion equation analogous to that of the
laminar Stokes problem, i.e.

∂w
∂ t

=
1

Re
∂ 2w
∂y2 , (4)

and the Reynolds stress term ∂ 〈w′v′〉/∂y is negligible
(Ricco & Quadrio, 2008).

Our preliminary step becomes that of verifying
whether this property applies to the general, non-sinusoidal
case too, since it might help interpreting and generalizing
the results reported in the previous section. Since Eq. (4) is
linear, the obvious starting point is to consider a harmonic
decomposition of the waveform, and to build the solution as
linear superposition of the various Stokes components. For
a single sinusoidal mode, i.e. the sinusoidal oscillation (3),
the analytical Stokes solution for laminar flows reads

wSt(y, t) =Wme−y/δ sin
(

2π
T

t− y
δ

)
(5)

where the wall-normal lengthscale δ is defined as

δ =

√
T

πRe
. (6)

In the general case, the time-dependent boundary con-
dition (1) for the diffusion equation (4) can be expressed via
the following Fourier series

Ww(t) =Wm

+∞

∑
n=1

Ane j(2πn/T )t + c.c. (7)

where j is the imaginary unit, An is the complex coeffi-
cient of the n-th Fourier component and c.c. stands for com-
plex conjugate. The resulting expression for the waveform-
generalized spanwise Stokes layer, obtained by superposi-
tion of the elementary solutions, reads as

wSt(y, t) =Wm

+∞

∑
n=1

Ane−
√

ny/δ e j[(2πn/T )t−√ny/δ ]+ c.c..

(8)
Figure 3 demonstrates the close agreement between the

laminar solution expressed by the superposition (8) and the
turbulent space-averaged profile for a non-sinusoidal wave-
form. It should be noted that the figure plots the turbu-
lent profiles for waveform ( f ), that most significantly de-
viates from the sinusoid, to emphasize how Eq.(8) provides
a rather robust description of the transverse boundary layer
created by the wall movement. The knowledge of the span-
wise velocity profile can now be exploited to derive a pre-
dictive tool for the assessment of the control performance
for wall oscillations of arbitrary waveform. This is de-
scribed in the following.
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Figure 3. Comparison between the laminar solution ex-
pressed by Eq. 8 (symbols), with summation truncated at
128 coefficients, and the turbulent averaged spanwise ve-
locity, 〈w〉(y,τ) at different oscillation phases for waveform
( f ) (lines). Left: (T0,Wm0). Right: (2T0,Wm0).

PREDICTION OF CONTROL PERFORMANCE
The input power required by the sinusoidal oscillation

is written analytically via the Stokes’ solution (5), and reads

Pin =
W 2

m
2

√
π

T Re
. (9)

Normalization of this quantity with the time-averaged
pumping power per unit channel wall area in the fixed-
wall case corresponds to the performance indicator Pin in-
troduced above. For a generic waveform, expressed through
the Fourier series (7), the same quantity becomes

Pin =W 2
m

√
π

T Re

+∞

∑
n=1

2|An|2
√

n . (10)

As shown in Fig. 4 (top left), the power consumption
computed with Eq. (10) is in excellent agreement with the
simulation results for the entire dataset. The inset highlights
how the percentage error remains small even when the ab-
solute value of Pin approaches zero. Eq. (10) can thus be
used to predict Pin for arbitrary values of T and Wm, as well
as for arbitrary waveforms. Moreover, the same equation
highlights that Pin ∝ W 2

m
√

π/ReT such that the qualitative
dependency of Pin on T and Wm is independent of the wave-
form, as already observed in figure 2.

The prediction of the turbulent drag reduction rate R is
much less trivial, since R does not simply derive from the
laminar solution (8) but results from the complex non-linear
interaction between the oscillation of the wall and near-wall
turbulence. Nonetheless, several proposals are available in
the literature to link properties of the transverse layer with
R. In particular, it has been suggested, for example by Choi
et al. (2002) and Quadrio & Ricco (2004), that R scales with
a parameter that combines a length and an acceleration scale
of the spanwise alternating layer.

The wall-normal length scale, ˜̀, is related to the pen-
etration of the Stokes layer into the channel, and is defined
as the largest distance from the wall where the maximum
wall-induced spanwise velocity exceeds a threshold veloc-
ity, Wth. For the sinusoidal waveform, the analytical solu-
tion (5) yields

˜̀(Wth) = δ ln
(

Wm

Wth

)
, (11)

where δ is defined by (6).
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Figure 4. Top plots. Left: power consumption data Pin for
all the simulations considered in this work versus the analyt-
ical prediction based on the Stokes layer assumption, equa-
tion (10). The inset plot shows the precentage error of the
predictions. Right: drag reduction rate, R, for four selected
waveforms for T+ ≤ 150 versus the parameter V+

R numeri-
cally computed from equation 8 for y+ = 6.3 and W+

th = 1.2.
Bottom plots. Left: turbulent drag reduction R as a function
of penetration depth `+, with ` computed from Eq. (15) us-
ing a threshold σ+

th = 0.8 corresponding to the intensity of
spanwise turbulent fluctuations in the uncontrolled case at
y+ ≈ 9. Gray symbols are for T+ = 62.5, black symbols
for T+ = 125 and open symbols for T+ = 250. Lines are a
fit with the power law `3/2. Right: same data, plotted versus
`3/2T−1/2, following Eq. (16).

The acceleration scale is a local maximum spanwise
acceleration, am, induced by the Stokes layer in a position
close to the wall. For the sinusoidal waveform, the analyti-
cal solution (5) yields

am(y) =
2π
T

Wme−y/δ .

These two quantities have been grouped together by Choi
et al. (2002) to form a scaling parameter that reads

VR(y,Wth) =
am(y) ˜̀(Wth)

Wm
= 2
√

π
T Re

ln
(

Wm

Wth

)
e−y/δ .

(12)
This scaling parameter, evaluated for y+ = 6.3 and
W+

th = 1.2, is known (Quadrio & Ricco, 2004; Touber &
Leschziner, 2012) to scale linearly with R, provided that
T+ ≤ 150.

Unfortunately, this scaling parameter does not work for
non-sinusoidal waveforms. Figure 4 (top right) shows that
the present data for T+ ≤ 150 versus the parameter VR do
not collapse into a single curve.

In order to find a universal scaling parameter for the
drag reduction rate achieved with different waveforms, the
relation between R and the laminar Stokes layer thickness is
revisited. For the sinusoidal case the Stokes layer thickness
increases with Wm and scales with

√
T/Re (see Eq. (5) and

the definition of δ ). For the generic waveform, the same de-
pendence holds for every harmonic component. However,
the generalized expression (8) reveals a phase shift among
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Figure 5. Turbulent drag reduction rate, R, as a function of
2W 2

m|A1|2 for T+ = 125. The continuous line is the predic-
tion (16), with ` computed from the first mode only, equa-
tion (18).

the various harmonic components, so that the correct veloc-
ity scale to define the penetration depth cannot simply be
Wm anymore. A good candidate for the definition of an ef-
fective penetration length for non-sinusoidal oscillations is
the mean square value (variance) of the oscillating spanwise
velocity, wSt(y, t)2, which for the sinusoidal case reads

w2
St(y) =

W 2
m

2
e−2y/δ . (13)

In analogy to the classical penetration length of the
Stokes layer, ˜̀, a new penetration length, `, can thus be de-
fined as the distance from the wall where the induced vari-
ance of the velocity drops below a certain threshold value
σ2

th. The previous Eq. (13) thus yields for the sinusoid

`(σth) =
1
2

δ ln

(
W 2

m

2σ2
th

)
. (14)

For the generic waveform, the variance of the oscillating
velocity is given by

w2
St(y) =W 2

m

∞

∑
n=1

2|An|2e−2
√

ny/δ , (15)

and this highlights how each mode contributes to the vari-
ance with a weighing factor which decays exponentially
with increasing n. This observation is important for the fol-
lowing derivations. We also remark that, in general, the pen-
etration length, `, cannot be expressed analytically, but must
be computed numerically from Eq. (15). In computing `, the
value W+

th = 1.2 is converted into the equivalent σ+
th = 0.8

which follows form Eq.(14) for the sinusoidal waveform.
Figure 4 (bottom left) shows that the relationship be-

tween R and ` is indeed similar for all the different wave-
forms considered. As already remarked by several authors,
for cases with large oscillation periods drag reduction drops
and the interaction between the streamwise turbulent flow
and the slowly oscillating Stokes layer changes nature and
trivially becomes a cyclic reorientation of the former by the
latter. In figure 4 (bottom) the same graphical representa-
tion as employed by Quadrio & Ricco (2011) is adopted,

-0.4 -0.3 -0.2 -0.1 0 0.1
S (estimated)

-0.4

-0.3

-0.2

-0.1

0

0.1

S
 (

co
m

p
u

te
d

)

Figure 6. Measured net energy saving data S versus its es-
timate through the Stokes layer thickness ` computed from
Eq. (16) and the analytical prediction of power consump-
tion, Eq. (10). The inset plots all data at T+ ≤ 150, whereas
the main plot is a zoom in the region S > 0.

and the data corresponding to slow oscillations are plotted
with open symbols.

For a given forcing period at T+ < 150 (i.e. for
datasets represented with black- and gray-filled symbols),
data for all the waveforms collapse onto one line, well fit-
ted by a power law ∼ `3/2. As shown in figure 4 (bottom
right), a linear scaling is obtained when R is plotted against
`3/2T−1/2 where T−1/2, as in Eq. (12), accounts for the
physical process of diffusion. The term T−1/2 carries the
relevant contribution of the acceleration term am in the ex-
pression (12) for VR, which however is affected not only by
T but also by the harmonic distribution in the waveform.
Neglecting the latter dependency upon the specific wave-
form yields the correct scaling parameter that is valid for
any waveform.

Hence, the turbulent drag reduction rate is well pre-
dicted by the expression

R = h1`
+(3/2)T+(−1/2)

+h2 (16)

where h1 and h2 are coefficients for which a linear fit of the
present data at Reτ = 200 and T+ < 150 yields h1 = 0.0738
and h2 = 0.02. As expected, the proposed scaling is indeed
not valid for T+ > 150.

The strong link between the penetration length ` and
the drag reduction R for T+ < 150 can be further exploited
to provide an analytical a priori estimate of the drag reduc-
tion capabilities of a generic waveform, when Wm and T are
given. Owing to the n modulation, the sum in (15) can be
approximated with its first term as

+∞

∑
n=1

2|An|2e−2
√

ny/δ ' 2|A1|2e−2y/δ . (17)

This approximation allows for an analytical estimate of ` as

`(σth) =
1
2

δ ln

(
2W 2

m|A1|2
σ2

th

)
. (18)

By plugging actual numerical values of the spectral
components in (15), one can easily realize that for the sec-
ond Fourier component to produce a contribution to the
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Figure 7. Dependency of the power consumption rate Pin

(left) and reduction of friction power R (right) on the maxi-
mum displacement D+

m for five different pairs of (T,Wm).

variance comparable to the first one, it must be |A2|/|A1| ∼
10. Since for the waveforms considered in the present work
the first mode happens to be by far the most energetic, ap-
proximation (17) is reasonable. In a waveform where the
first mode is not dominant, the spectrum should increase
with n at least exponentially; in such a case, this would
bring about a dramatic increase of the power consumption
and would make such a waveform highly unpractical.

The estimation of R is now possible analytically using
Eq. (16) when ` is computed through (18), i.e. using only
its first Fourier harmonic. This estimation of R is included
in figure 5 as a solid line, and shows very good agreement
with the data points obtained by DNS.

Since Pin and also R have been shown to be predictable
purely on the basis of the laminar solution of the Stokes
layer the net energy saving rate, S, can also be predicted.
Figure 6 shows that the prediction quality for S is high
throughout the entire range of available data, and that the
scatter remains very limited in the most interesting narrow
region where S > 0. Such predictive capabilities are obvi-
ously useful since the required solutions of equations (10)
and (15) do not require extensive computations. Hence, the
present predictive tool can be used to guide the design of the
wall movement when trying to realize an oscillating wall in
practice. Lastly, let us remark that the present approach is
naturally also valid for the classical sinusoidal oscillation,
of which it represents a generalization.

In closing, let us briefly discuss the dependency of the
overall performance, S, in terms of Pin and R, on the max-
imum displacement Dm for the different waveforms. Let
us recall that from the geometrical point of view the value
of the maximum displacement is proportion to the area un-
der the curves in Fig. 1 hence the plots of the S vs. Dm,
where in turn T+ and W+

m are kept constant, will resemble
the plots of Fig. 2, respectively. More precisely, one sin-
gle plot would be spread in turns in each direction accord-
ingly to the proportionality constants due to the different
shapes. Indeed our approach allows to study the effect of
Dm independently on the period and the maximum oscilla-
tion through the waveforms. Namely given the definition
(2) it is possible to reconstruct the dependence of Dm on the
spectral distribution as

Dm = 2
∫ T/2

0

[
Wm

+∞

∑
n=1

Ane j(2πn/T )t + c.c.

]
dt. (19)

This approach yields the expression

Dm = 2WmT

[
+∞

∑
n=1

An
pn

2πn
+ c.c.

]
(20)

where pn is a complex coefficient which results from the in-
tegration of the Fourier polynomials and is independent on
the waveforms. Equation (20), once compared with equa-
tions (10) and (15) for Pin and w2

St(y) respectively, clearly
shows that the spectral distribution of the different wave-
forms influences in completely different ways these three
observables. Namely, an infinite number of waveforms, cor-
responding to different sets of coefficients An, can lead to
the same displacement. Parallely, waveforms characterized
by the same Pin or R, and hence by the same S, can have
completely different values of Dm.

This lack of correlation between the maximum dis-
placement and Pin, R and S is verified by the present data
as shown in Fig. 7.

CONCLUSION
In short, it is found that the waveform actually matters,

and that the sinusoidal waveform is the best when one is
interested in the net energy saving. However, what is true
for the absolute optimum in parameter space is not true any-
more locally, so that for certain combinations of oscillation
periods and amplitudes temporal waveforms exist that out-
perform the sinusoid.
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