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ABSTRACT
This work investigates the subcritical transition in the

swept Hiemenz boundary layer (SHBL) by means of direct
numerical simulations (DNS). A combination of a steady
and a time-dependent disturbance leads to spatial bypass
transition. The primary disturbance consists of steady co-
rotating vortices, leading to streaks. The secondary, time-
dependent disturbance interacts with the streaks and insta-
bility and breakdown may occur. The instability is strictly
of secondary nature and only occurs for a certain band of
secondary disturbance frequencies.
The influence of uniform suction across the wall on this by-
pass transition is investigated. Analogous to results from
linear stability theory, also the secondary stability is en-
hanced by suction. Depending on the Reynolds number and
the suction strength, the unstable disturbances are shown to
be either localized structures, convected along the stream-
lines, or global structures, covering broad regions in the
downstream direction.

INTRODUCTION
The SHBL is found on a flat plate when the far-field

consists of a plane impingement flow (Hiemenz, 1911) and
an additional perpendicular sweep velocity component. It
has found wide application as a model for the flow along
the attachment line of swept airplane wings. The Reynolds
number of the problem is defined asRe=W∞/

√
aν , where

W∞ is the sweep velocity of the far-field,a the rate of strain
of the impingement flow,ν the kinematic viscosity.
Solutions for the linear stability of the three-dimensional
flow were formulated by G̈ortler (1955) and Ḧammerlin
(1955), while Pfenninger (1977) and Poll (1979) found it
to be subcritically unstable with a linear critical Reynolds
number ofRec = 583.1. The global critical Reynolds num-
ber, below which no disturbance can lead to transition, was
estimated asRec,gl ≈ 250.
Hall et al. (1984) investigated the linear stability problem
under application of suction at the wall. The correspond-
ing non-dimensional parameter isκ =V0/

√
νa, where−V0

is the suction velocity. They showed that the linear critical
Reynolds number is substantially increased if suction is ap-
plied. Further extensions to weakly nonlinear theory were
performed (Hall & Malik, 1986) and numerical simulations
with suction were carried out by Joslin (1995), but only for
small values ofκ and in the vicinity of the linear critical
value forRe. To date, no theoretical explanation of the ex-
perimental value forRec,gl is known and the influence of
suction on the subcritical transition needs clarification.
Recently, a nonlinear subcritical spatial transition mecha-
nism was reported by Obristet al. (2012), the cornerstone
of which is the interaction of a pair of steady streamwise
vortices with an unsteady, secondary perturbation of much
lower amplitude. The vortices were earlier identified as op-
timal disturbances with respect to the formation of streaks
and transient energy growth (Gueganet al., 2007). This by-
pass scenario closely resembles the transition known from
two-dimensional flat plate boundary layers (Landahl, 1980;
Waleffe, 1997). Transition in simulations of the flow around
swept wings as a result of the interaction of steady with un-
steady perturbations was as also reported by Hosseiniet al.
(2013).
In the remainder of the paper we explain the methodology
of the DNS performed and provide information on the type
of disturbances which initiate the instability. The results
section first focuses on the influence that the primary and
the secondary instabilities have on the disturbance energy.
The secondary instability nature of the bypass transition
scenario is investigated, i.e. the base flow is found to be
stable with respect to the primary disturbance alone, even
for relatively large amplitudes. We then present parametric
dependencies of the secondary instability on the strength of
the suctionκ and the Reynolds numberReand we report on
different transition locations. Finally, we present the con-
clusions.

METHODOLOGY
We perform DNS of the incompressible swept

Hiemenz boundary layer flow using our in-house code
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Figure 1. Typical isosurfacesλ2 = −10−3 of the λ2 vortex criterion for a flow configuration stabilized by suction. The
perturbation at the inflow planez= 0 leads to the growth of primary and secondary vortices (Re= 370, κ = 1.0, T2 = 30).
Simulations at the (even lower) Reynolds numberRe= 300 were found to be unstable (top right) with respect to an identical
perturbation by Obristet al. (2012).

IMPACT (Henniger et al., 2010). The Navier-Stokes
equations are discretized in all three spatial directions by
sixth order finite differences on a structured Cartesian grid.
The time-integration is semi-implicit (explicit Runge-Kutta
for nonlinear terms/Crank-Nicolson for linear terms).
Except for the wall suction and the shape of the spatial
disturbances, the configuration of the simulations follows
Obrist et al. (2012): The SHBL solution is initiated in
the full computational domain. Spatial disturbances are
prescribed at the inflow planez= 0 and the exact SHBL
solution is prescribed as Dirichlet conditions at the top
inflow plane (cf. fig. 1). At the remaining three open
boundaries we prescribe advective outflow conditions
for the velocity disturbances (i.e. the deviation from the
SHBL) in the direction normal to the boundary.

Primary and secondary disturbance
The spatial disturbances consist of a pair of counter-

rotating vortices imposed at the inflow planez = 0,
aligned with the streamwisez direction,u′(x,y,z= 0, t) =
(u′(x,y, t),v′(x,y, t),0)T . Their amplitude is chosen to os-
cillate around a steady mean,u′(x,y, t) = ū′(x,y) · [1+
A2 sin(2πt/T2)]. The maximum mean velocity amplitude
A1 = maxx,y |ū′| and other parameters (e.g. geometrical po-
sition, radial extent) are prescribed for the generic pair of
vortices, which give rise to streaks of streamwise velocity.
We consider the arising streak velocity excess amplitude de-
fined as

ASt(z) = max
x,y

(|w(x,y,z)−wB(x,y)|)/W∞,

wherewB is the laminar SHBL base flow. Typical values of
ASt for different primary vortex amplitudesA1 are shown in
figure 2.
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Figure 2. Maximum streak velocity excess as a function of
streamwise positionzand amplitude of the primary vortices
A1 for large times,Re= 370,κ = 0.12,A2 = 0.0012

Measures of disturbance energy
In order to quantitatively describe the stability proper-

ties of the flows, two measures of the disturbance energy are
employed. The first is the total disturbance energy

E(z, t) =

∞∫

−∞

∞∫

0

(u(x,y,z, t)−uB(x,y))
2 dydx,

whereuB is the SHBL base flow.E(z, t) expresses the de-
viation of the flow from the laminar solution. The time-
dependent function attains statistically stationary values for
sufficiently large times.
In order to quantitatively assess the secondary instability
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Figure 3. Typical Fourier-Hermite spectral energy density
ek,n(z), showing initial primary modes (stationaryk = 0,
symmetric with respect tox = 0, n odd) and the growth
of secondary (k > 0) modes.Re= 370,κ = 0.6, T2 = 30,
A1 = 0.10

and its growth rate a Fourier-Hermite spectral decomposi-
tion of the instantaneous flow is performed, which provides
time-independent spectral disturbance energy densities

ek,n(z) =

∞∫

0

|û′k,n(y,z)|2+ |v̂′k,n−1(y,z)|2+ |ŵ′
k,n−1(y,z)|2dy

for the various modes, computed from

û′k,n(y,z) =
tb∫

ta

∞∫

−∞

u′(x,y,z, t) ·Hen(x) ·e−(x/(
√

2γ))2
dx

·e−i2πkt/T2 dt,

whereHen(x) is the Hermite polynomial of ordern and
γ = 10 as a typical value (Obrist & Schmid, 2003). The
starting point for the analysista ≈ 1800 is such that the sim-
ulations have attained a statistically stationary disturbance
energyE(z, t) and the time intervaltb− ta is set to contain
approximately 10 to 20 periods of durationT2.

RESULTS
A typical spectral decomposition of an unstable flow is

shown in figure 3. The primary disturbance leads to non-
zero stationary modes (k = 0), which are symmetric with
respect to the center planex= 0 (n odd). Secondary modes
(k = 1) grow exponentially after a short transient period.
These modes are still symmetric (n odd) with respect to
x= 0. Only far downstream do even modes (n even) grow
to substantial values, which eventually leads to fully devel-
oped turbulent flow.
The growth rateα of the secondary instability may be esti-
mated from

e1,1(z)≈ e1,1(z= z0) ·eα(z−z0)
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Figure 4. E1/2(z, t = 1500) for different primary distur-
bance amplitudesA1 at Re= 367.42, κ = 0.12, T2 = 18.4,
A2 = 0.001

for some suitablez0, marking the position of the onset of
modal growth of the secondary instability (e.g.z0 ≈ 120
in fig. 3). For almost all simulations robust positionsz0
could be identified, from where on exponential growth of
e1,1 could be observed.

Verification of secondary instability
With these measures we verified that the mentioned

bypass transition scenario is in fact based on a secondary
instability phenomenon. On the one hand, as long as the
secondary amplitudeA2 is zero, no transition can be found,
even though the energy of the pair of primary vortices is
seen to increase by several orders of magnitude. For non-
zeroA2, however,α shows a rather high sensitivity to the
amplitude of the primary vortices (fig. 4). On the other
hand, given a primary disturbance,α is found to be quasi
independent ofA2 > 0. At the same time, a significant in-
fluence of the period of the secondary disturbanceT2 on α
is observed. A band of unstable frequencies is found, with
α attaining its maximum at approximatelyT2 ≈ 15...20 (fig.
5).

Influence of boundary suction κ and of Re
The subcritical instability described above may be sta-

bilized by suction at the wall (fig. 1), i.e. a flow at a given
Re, which would lead to transition through secondary insta-
bility in the absence of suction, may seen to be stabilized.
This stabilization of the flow, however, is not entirely com-
parable to the well-known results of linear stability theory
(Hall et al., 1984), because it is an effect of the secondary
stability. The energy contained in the primary disturbances,
obtained transiently from the base flow, is not substantially
reduced by suction and no (quasi-)monotonic energy de-
crease is observed. Rather, the primary disturbance energy
remains of the same order of magnitude and only the growth
rateα of the secondary disturbance is reduced. This effect
may even completely stabilize the flow, ifα becomes nega-
tive. In all cases, a reduction ofα is achieved by increasing
suction and transition is delayed to larger values ofz. The
ability of κ to alter the stability properties for a given base
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Figure 5. Secondary instability growth rateα (and stan-
dard deviations arising from different choices ofz0) as a
function of the secondary disturbance periodT2 at Re=
367.4, κ = 0.12,A1 = 0.1155
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Figure 6. E1/2(z, t = 1500) for different values ofκ atRe
= 370,T2 = 30,A1 = 0.10

flow and disturbance is summarized in figure 6.
As in the case of linear stability theory, increasing

Re leads to larger secondary instability growth ratesα .
Therefore, unstable flows undergo transition earlier. Figure
7 illustrates these effects.

Summarizing the results of the two preceding sections,
figure 8 shows the growth ratesα for the various simula-
tions as a function of bothRe and κ . It is interesting to
compare the locations of the unstable simulations in the
(Re,κ)-plane with that of the neutral curve of linear stability
theory, denoted in the figure by the solid line. All simula-
tions above and to the left of the neutral curve are linearly
stable. Non-linearly unstable flows can be found even at
large distances from the linear neutral curve, for very low
values ofRe (e.g. Re= 300 whenκ = 0, as opposed to
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Figure 7. E1/2(z, t = 1500) for different values ofReat κ
= 1.0, T2 = 30,A1 = 0.10
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Figure 8. Growth ratesα of the modee11 as a function of
Reandκ for T2 = 30, A1 = 0.10. The radii of the circles
are proportional toα , solid circles denote positive (unsta-
ble) and open circles negative (stable) values. The solid
line denotes the neutral curve of linear stability theory (Hall
et al., 1984). The dotted lines correspond toκ = 1.0 andRe
= 370, respectively, which are the values taken for figures 6
and 7.

Rec,lin |κ=0 ≈ 583.1) and for very large values ofκ (e.g.
κ = 2.0 whenRe= 800, as opposed toκc,lin |Re=800≈ 0.06).
This demonstrates the effectiveness of the combination of
counter-rotating primary vortices as a primary disturbance
and a weak unsteady secondary perturbation for triggering
transition.
Despite the apparent effectiveness of the disturbance, even
moderate values ofκ suffice to stabilize the flow atRe=
300. This is consistent with the fact thatRec,gl ≈ 250 is the
global critical limit, reported experimentally by Poll (1979),
below which virtually no disturbance may destabilize the
flow, even in the absence of suction.
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Figure 9. Visualization of transition by isosurfacesλ2 =−10−4 of theλ2 vortex criterion. Top:Re= 500,κ = 0.0, T2 = 30,
A1 = 0.10, bottom:Re= 300,κ = 0.4, T2 = 30,A1 = 0.10, both colored by the local streamwise velocityw(x,y,z). The black
lines are streamlines originating atz= 0 inside the boundary layer approximately at mid-depthy= 1.5.

Analogy to absolute/convective instability

Another interesting feature of the instability is the di-
rection of its spatial evolution. For any given disturbance
the combination ofRe and κ defines not only the (sec-
ondary) growth rate of the instability of the flow, but also
the geometric properties of the base flow. Especially, al-
teringReor κ alters the boundary layer thickness (i.e. the
length scale of the boundary layer) and the rate of diver-
gence of the streamlines of the base flow. Thus, both the
instability and the geometrical evolution are simultaneously
defined byReandκ . For the inflow disturbance type used
we observe three kinds of spatial evolution.
First, the flow may be stable and the secondary disturbances
may be damped. In this case no transition is observed and

far downstream the base flow is recovered (fig. 1). The sec-
ond picture is that of spatial instability. In this case distur-
bances grow primarily in thez-direction (cf. fig. 9(a)). The
transition region widens until the coherent structures break
down. Finally, the region of turbulent flow covers an en-
tire wedge-shaped area, confined by diverging streamlines
of the laminar base flow. The contaminated region extends
from a negative to a positive chordwise location, such that
this kind of spatial evolution may be seen as the analog to
“absolute instability” known from linear stability theory.
The third spatial transition scenario (fig. 9(b)) is distinc-
tively different from the second. It is also unstable, but the
disturbances are concentrated to within a small band, fol-
lowing the direction of the outer streamlines of the base
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flow. Therefore, the disturbance growth is localized in
space. For any spatial position(x,y) the laminar base flow
is recovered at a sufficiently large value ofz. This sce-
nario may be understood as an analogy to “convective in-
stability”. One must thus bear in mind that measuring the
growth rateα in thex or z direction alone is not sufficient
for a physically sensible description of the transition, be-
cause two qualitatively different transition configurations
may lead to identical growth ratesα .

CONCLUSIONS
We have carried out simulations of the SHBL which

exhibit bypass-transition of laminar to turbulent flow at sub-
critical Reynolds numbers. The flows were perturbed with
a pair of counter-rotating vortices, leading to streaks. The
streaks were seen to be destabilized by a secondary, time-
dependent disturbance, which needs to lie within a certain
frequency band. This combination of disturbances leads to
a secondary instability of the base flow and proves very
effective in generating turbulent flow. Even for Reynolds
numbers much lower than the linear critical value, transi-
tion could be observed.
Application of suction at the wall was shown to reduce the
growth rates of the secondary instability, i.e. to delay tran-
sition. This is understood as an extension of the results
known from linear stability theory, where the application
of suction is known to increase the linear critical Reynolds
number. Large enough suction may even lead to flow sta-
bilization. Nevertheless, for strong primary disturbances,
subcritical instability was found even for very large suction
values.
ChangingReandκ alters not only the secondary instability
growth rates but also the length scale of the base flow and
the rate of divergence of its streamlines. Therefore, a phe-
nomenon analogous to convective and absolute instability
was observed. If the flow is unstable, not only contamina-
tion of the entire leading edge could be observed, but also an
entirely laminar flow sufficiently far downstream. Hence,
knowledge of the growth rate of the secondary instability
alone is not sufficient to predict the area where turbulent
flow is to be expected.
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