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Camino de Vera S/N, 46022 València, Spain
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ABSTRACT
A fully developed, turbulent Poiseuille flow with wall

transpiration (see figure 1), i.e. uniform blowing and suc-
tion on the lower and upper walls correspondingly, is inves-
tigated by both direct numerical simulation (DNS) of the
three-dimensional, incompressible Navier-Stokes equations
and Lie symmetry analysis. A new logarithmic mean ve-
locity scaling law of wake type is found in the core region
of the flow. The slope constant in the core region differs
from the von Kármán constant and is equal to 0.3. Extended
forms of the linear viscous sublayer law and the near-wall
log-law are also derived, which, as a particular case, include
these laws for the classical non-transpirating channel flow.

Introduction
Wall-bounded turbulent flows with transpiration may

not only be a technologically important subject of investi-
gation (Jiménezet al., 2001; Kametani & Fukagata, 2011)
but also important for theoretical reasons as we will subse-
quently show.

In comparison to the other wall-bounded flows with
specific, non-standard boundary conditions, turbulent chan-
nel i.e. Poiseuille flow with wall transpiration is a rela-
tively new subject of investigation. The only experimen-
tal study of this flow of an incompressible fluid known to
the authors was conducted by Zhapbasbayev & Isakhanova
(1998). They collected statistics for the mean velocity and
turbulent stresses for different Reynolds numbers and a va-
riety of small transpiration velocity numbers in the range
0< v0/uτ < 0.05.

In the literature only a few DNS studies of the turbu-
lent channel flow with blowing and suction were reported.
Sumitani & Kasagi (1995) studied turbulent channel flow
with uniform wall transpiration and heat transfer. The
walls were kept isothermal, while their temperatures vary.
The Reynolds number and the transpiration rate were held
constant atReτ =150 andv0/uτ =0.05. Various statistical
quantities including mean velocity and mean temperature,
Reynolds stresses, and turbulent heat fluxes were obtained.

Figure 1. Sketch of the channel flow with wall transpira-
tion. Fluid is uniformly blown through the lower wall and
removed from the upper wall.

Energy budgets and temperature correlations were also cal-
culated. One key overall result they have found was that
blowing stimulates the near-wall turbulence and creates an
excessive amount of small scale coherent streamwise vorti-
cal structures while suction suppresses turbulence and at the
same time creates large scale near-wall coherent structures.
Nikitin & Pavel’ev (1998) performed DNS computations at
Reτ=356, 681.2 forv0/uτ =0.112, 0.118, respectively. They
investigated the near-wall logarithmic region of the mean
velocity profile and found that the slope constant of the log-
law at the blowing wall is not constant and increases with
the increase of transpiration rate. Here it is important to
mention that they used the local friction velocity at each
wall as the velocity scale. This is rather natural to do so,
however, presently we employ an averaged friction velocity
from both walls, which is a measure of the pressure gradi-
ent, collapsing our DNS data to a considerably extended
range. Chung & Sung (2001) investigated the initial re-
laxation of a turbulent channel flow after a sudden appli-
cation of blowing and suction. Later, Chunget al. (2002),
extended this by modulating the near-wall turbulence with
uniform wall blowing and suction.

A purely analytical study of the turbulent channel flow
with wall transpiration was performed by Vigdorovich &
Oberlack (2008). Employment of the method of matched
asymptotic expansions led them to the construction of the
solutions for the near wall regions (both blowing/suction)
as well as for the core region of the flow.
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Summarizing all above mentioned studies we conclude
that there is no comprehensive investigation of the mean ve-
locity scaling laws of the Poiseuille flow with uniform wall
transpiration based on first principles. This difficulty may
be traced back to the problem of determining an appropriate
velocity scale as there are multiple includingv0, uτ on both
walls andUb being the bulk velocity, as well as the proper
choice of equations on which the analysis should be based
on.

Presently, the application of Lie symmetry method to
the two-point correlation (TPC) equations is employed as
the fundamental basis to find new mean velocity scaling
laws as well as the proper scales on which it is based. DNS
facilitate to evaluate the analytical results and finally allow
to establish a clear connection between the different veloc-
ity scales.

In a series of papers Oberlack and co-authors (see
Oberlack, 2000, 2001; Oberlack & Rosteck, 2010) stud-
ied the turbulent channel and other canonical wall-bounded
flows using Lie symmetry theory by investigating the in-
finite series of multi-point correlation (MPC) equations.
They showed that scaling laws are exact solutions of sym-
metry invariant type of the infinite dimensional series of
MPC equations. They have shown that turbulent scaling
laws may be generated from first principle and that most
of the classical and new symmetry invariant solutions are
based on one or several of the newly discovered statistical
symmetry groups (Oberlack & Rosteck, 2010).

In this paper we propose new scaling laws for turbulent
Poiseuille flows with wall transpiration. Besides, we obtain
a new logarithmic scaling law in the center of the channel
using Lie symmetry methods. The law is of defect type and
covers up to 75% of the channel depending on the turbu-
lent Reynolds numberReτ and the transpiration velocityv0.
In order to validate the new scaling laws, various DNS of
the channel flow atReτ=250, 480 and a wide range of the
transpiration velocityv0 are conducted.

Governing equations
The analysis presented below is based on the mean fric-

tion velocity defined as follows

uτ ≡

√
u2

τb +u2
τs

2
=

√
1
ρ
|τwb|+ |τws|

2
=

√
h
ρ

∣∣∣∣
∂ P̄
∂x1

∣∣∣∣, (1)

which is a measure of the pressure gradient and the local
friction velocities are defined as

uτb =

√
ν
∣∣∣∣
∂Ū1

∂x2

∣∣∣∣
b
, uτs =

√
ν
∣∣∣∣
∂Ū1

∂x2

∣∣∣∣
s
. (2)

Here, Ū1 and
∂ P̄
∂x1

are the mean velocity and mean pres-

sure gradient in streamwise direction,ν is the kinematic
viscosity andh is the channel half-width. Here and subse-
quently subscripts()b and()s correspond to variables taken
on the blowing and the suction side respectively. For vari-
ables at the wall we use the subscript()w and variables with-
out blowing and suction are denoted by()0. Dimensionless
variables in the near-wall scaling will have the superscript

plus:

x+i =
xiuτ

ν
, Ū+

i =
Ūi

uτ
, uiuk

+ =
uiuk

u2
τ
, v+0 =

v0

uτ
,

τ+ =
τ

(|τwb|+ |τws|)/2
. (3)

Note, that hereuτ is the mean friction velocity, which is
a global parameter. We employ the channel half-widthh
as a core-region length scaling parameter. The bulk mean
velocity is defined as

Ūb =
1
2h

∫ 2h

0
Ū1(x2)dx2. (4)

Throughout this paper we use the following notations. The
statistically averaged quantities are denoted by an overbar
e.g. Ūi, P̄ whereas fluctuating quantities are denoted by a
lower case letters i.e.ui andp. The governing equations for
an incompressible turbulent flow, i.e. continuity and mean-
momentum equations, are

∂Ūk

∂xk
= 0, (5)

∂Ūi

∂ t
+Ūk

∂Ūi

∂xk
=− ∂ P̄

∂xi
+ν

∂ 2Ūi

∂xk∂xk
− ∂uiuk

∂xk
, i = 1,2,3,

(6)
whereŪi(xi, t) andP̄(xi, t) are the mean velocity and mean
pressure, anduiuk is the Reynolds stress tensor. For the in-
compressible flow investigated, pressure is normalized with
the constant density.

We have the following boundary condition (BC) for the
present flow

Ūi(x1;x2 = 0, 2h;x3) = (0; v0; 0)T . (7)

One of the key assumption, which has been confirmed by
the DNS, is that of a constant mean wall-normal velocity
across the channel height, i.e.

Ū2(x2) = v0. (8)

With this, we obtain the streamwise component of mean
momentum equation for the steady state

v0
dŪ1

dx2
=− dP̄

dx1
− du1u2

dx2
+ν

d2Ū1

dx2
2
. (9)

As the pressure gradient is specified as a constant,
equation (9) may be integrated once and rearranged to ob-
tain

τ(x2)−v0Ū1 =−u1u2+ν
dŪ1

dx2
−v0Ū1 = x2

dP̄
dx1

+c1.

(10)

2



August 28 - 30, 2013 Poitiers, France

TBL4E

Herec1 is a constant that in the canonical channel flow is
defined asρu2

τ (Tennekes & Lumley, 1972). Due to differ-
ent wall conditions of the channel flow with transpiration
the wall shear stresses on the blowing and suction walls are
different, which brought the necessity to use a local friction
velocity in (10) rather than a global one.

The space and time correlation functions in the theory
of turbulence was first introduced by Keller & Friedmann
(1924). Various authors derived the complete system of
two-point correlation equations (see e.g. Hinze, 1959; Mc-
Comb, 1990), while Keller & Friedmann (1924) were also
the first who closed it by writing the third moment via the
second moment and the mean. Presently we only focus on
the two-point correlation (TPC) equations in its most gen-
eral form

D̄Ri j

D̄t
+ Rk j

∂Ūi(x, t)
∂xk

+Rik
∂Ū j(x, t)

∂xk

∣∣∣∣
x+r

+[Ūk (x+ r, t)−Ūk (x, t)]
∂Ri j

∂ rk
+

∂ pu j

∂xi
−

∂ pu j

∂ ri

+
∂ui p
∂ r j

−ν

[
∂ 2Ri j

∂xk∂xk
−2

∂ 2Ri j

∂xk∂ rk
+2

∂ 2Ri j

∂ rk∂ rk

]

+
∂R(ik) j

∂xk
− ∂

∂ rk

[
R(ik) j −Ri( jk)

]
= 0, (11)

without introducing any closure, where the second and third
order correlation tensors are defined as

Ri j(x,r; t) = ui(x, t)u j(x+ r, t),

pu j = p(x, t)u j(x+ r, t), ui p = ui(x, t)p(x+ r, t),

R(ik) j(x,r; t) = ui(x, t)uk(x, t)u j(x+ r, t),

Ri( jk)(x,r; t) = ui(x, t)u j(x+ r, t)uk(x+ r, t).

Continuity equations for the TPC have the following form

∂Ri j

∂xi
− ∂Ri j

∂ ri
= 0,

∂Ri j

∂ r j
= 0 (12)

and

∂ pui

∂ ri
= 0,

∂u j p

∂x j
− ∂u j p

∂ r j
= 0. (13)

DNS
In order to verify the scaling laws to be obtained for

the different regions of the flow in the sections to follow we
conduct a number of DNS for different transpiration rates
and Reynolds numbers.

For the present DNS we employ a numerical code de-
veloped at the School of Aeronautics, Technical Univer-
sity of Madrid (Hoyas & Jiménez, 2006). The code solves
the Navier-Stokes equations for an incompressible fluid in
velocity-vorticity formulation (see e.g. Kimet al., 1987).
In the streamwise and spanwise directions (x1,x3) Fourier
discretization is used. In the wall-normal direction, (x2), a
seven-point compact finite difference scheme (Lele, 1992)
is applied. The DNS data of Sumitani & Kasagi (1995) are
used for the validation of our DNS results.

Production runs can be divided into two sets depending
on the friction Reynolds numberReτ = 250, 480. Each sim-
ulation set consists of four cases for different transpiration
ratesv+0 = 0.05, 0.1, 0.16, 0.26. A complete summary of
the flow and the numerical parameters are given in Avsark-
isov et al. (2013).

Lie symmetry analysis
Application of the wall transpiration to the turbulent

channel flow at moderate and high Reynolds numbers re-
vealed a new logarithmic mean velocity scaling law in the
core region. A starting point for this analysis was the obser-
vation, that transpiration velocity may be a symmetry break-
ing in a core region of the flow.

In order to derive a new turbulent scaling law for the
present flow from the TPC equation we need to consider
the appropriate symmetry transformations. For the present
problem it is sufficient to focus on the three scaling groups
(T̄1, T̄2, T̄ ′

s ), the translation group in space (T̄x2) and the
translation group of the averaged velocity (T̄Ūi

). In global
form these transformation groups are defined as:

T̄1 : t∗ = t, x∗ = ek1x, r∗(l) = ek1r(l), Ū∗ = ek1Ū ,

P̄∗ = e2k1P̄, R∗
i j = e2k1Ri j, pu j

∗ = e3k1 pu j,

ui p∗ = e3k1ui p, . . . , (14)

T̄2 : t∗ = ek2t, x∗ = x, r∗(l) = r(l), Ū∗
= e−k2Ū ,

P̄∗ = e−2k2 P̄, R∗
i j = e−2k2Ri j, pu j

∗ = e−3k2 pu j,

ui p∗ = e−3k2ui p, . . . , (15)

T̄ ′
s : t∗ = t, x∗ = x, r∗(l) = r(l), Ū∗

i = eksŪi,

P̄∗ = eks P̄, R∗
i j = eks

[
Ri j +

(
1−eks

)
ŪiŪ j

]
,

pu j
∗ = eks pu j +(eks −e2ks )P̄Ū j,

ui p∗ = eks ui p+(eks −e2ks )P̄Ūi, . . . , (16)

T̄x2 : t∗ = t, x∗ = x+kx2, r∗(l) = r(l), Ū∗ = Ū ,

P̄∗ = P̄, R∗
i j = Ri j, pu j

∗ = pu j,

ui p∗ = ui p, . . . , (17)

T̄Ūi
: t∗ = t, x∗ = x, r∗(l) = r(l), Ū∗

i = Ūi +kŪi
,

P̄∗ = P̄, R∗
i j = Ri j, pu j

∗ = pu j,

ui p∗ = ui p, . . . . (18)

The first two scaling symmetries are well-known from
Euler and Navier-Stokes equations describing scaling of
space and time. The third one is new and independent from
them. It stands for scaling of all TPC tensors, and it is a
purely statistical property of these equations (Oberlack &
Rosteck, 2010). One of the most crucial symmetries for
the results to follow and also a key ingredient of the clas-
sical log-law (Oberlack, 2001) is symmetry (18). It also is
of purely statistical nature and was discovered in the con-
text of an infinite set of statistical symmetries in Oberlack
& Rosteck (2010).

From the symmetry transformations we may construct
the invariance condition (see e.g. Blumanet al., 2010) en-
compassing all groups given above

dx2

k1x2+kx2

=
dr(k)
k1r(k)

=
dŪi

(k1−k2+ks)Ūi +kŪi

= · · · , (19)
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Figure 2. Mean velocity profiles and linear law.(a) at the blowing wall,(b) at the suction wall. Solid lines correspond to
the linear laws (26), (27), dashed lines to the velocity profile without transpiration and dotted lines to the velocity profiles with
transpiration. In direction of arrow:v0/uτ = 0.0,0.05,0.1,0.16,0.26, Reτ = 250.

where in the present paper any further invariance conditions
for higher correlations are omitted. In order to determine
group parameterski we may invoke a boundary condition
Ū2 = v0, as this is the key influencing factor for altering the
flow. As it acts primarily on the velocity we consider the
concatenated global transformations for the mean velocity

Ū∗
i = ek1−k2+ksŪi, (20)

taken from (14 - 16). Invariance, and in turn similarity re-
duction, requires at the first place the symmetries admitted
by the underlying equation, like the TPC equation (11). In a
second step, however, for the construction of a concrete so-
lution, symmetries have to be constructed with the imposed
boundary conditions, that leads to

e−(k1−k2+ks)Ū∗
2 = v0. (21)

As symmetry by definition implies form invariance this pro-
vides the constraints

k1−k2+ks = 0. (22)

That leads to the conclusion that transpiration velocity (v0)
is symmetry breaking in the core region of the flow. Impos-
ing the latter constraint onto (19) and integrating the first
with the third term leads to a new logarithmic scaling law
for the streamwise mean velocity in the core region

Ū1 = A1 ln
( x2

h
+B1

)
+C1, (23)

whereA1, B1 andC1 are simple functions of the group pa-
rameterski. If it may be presumed thatv0 is sufficiently
large (0.05≤ v+0 ) we will subsequently show that the latter
new log-law is valid in the core region of a turbulent channel
flow with wall transpiration.

For the wall-normal component of the mean velocity
Ū2 a result similar to (23) is obtained from (19). Taking
into account the additional constraintkŪ2

= 0, we obtain
Ū2(x2) =C2, which nicely confirms the assumption (8) that
the wall-normal component of mean velocity is a constant
and is equal to the transpiration velocityv0.

New mean velocity scaling laws
The occurrence of the convective momentum transport

term on the left hand side of the mean momentum equation

v0
dŪ1

dx2
=− dP̄

dx1
− du1u2

dx2
+ν

d2Ū1

dx2
2

(24)

modifies classical scaling laws (viscous sublayer and law
of the wall) which were regarded as universal for all non-
transpiring wall-bounded flows. While for moderate blow-
ing/suction rates 0.04< v0/uτ < 0.1 (Tennekes, 1965; Vig-
dorovich & Oberlack, 2008) the viscous sublayer appears
on both walls, near-wall log-law of the wall is observed only
on the blowing side, where local friction velocity is consid-
erably lower then on the suction side.

An extended form of the linear viscous sublayer law
and the near-wall log-law have been derived, which include
the laws derived for the canonical flows without transpira-
tion as a particular case.

In order to reformulate the local friction velocities by
the averaged friction velocityuτ which is related to the
streamwise pressure gradient we will use the following
transformations

u2
τb =

a
h

u2
τ , u2

τs =
2h−a

h
u2

τ . (25)

The coefficientsa/h and(2h−a)/h represent the relations
τwb/τw andτws/τw respectively, anda is a parameter that
depends on the transpiration velocity. This facilitates a nor-
malization of the terms of the momentum equation withuτ
rather than with local ones, which allows us to directly com-
pare the scaling regions of the blowing and the suction wall
based on the same scaling parameter.

For the viscous sublayers on blowing and suction sides
respectively the following velocity scaling laws are ob-
tained:

Ū+
1 =

a
h

x+2 , (26)

Ū+
1 =

2h−a
h

x+2 . (27)
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Figure 3. Mean velocity profiles of a turbulent channel flow with wall transpiration at the blowing wall at(a) Reτ = 250 and
(b) Reτ = 480. Solid lines correspond to the log-law (28), whereA+ = 0. Dotted lines correspond to the mean velocity profiles.
From top to the bottomv0/uτ = 0.05,0.1,0.16.

Since the viscous stress at the blowing wall is smaller than
in a channel with impermeable boundaries, the viscous sub-
layer at the blowing side is thinner then for the classical
flow, as can be taken from 2(a).

On the suction side in the presence of a strong viscous
stress and weak Reynolds shear stress the region of linear
scaling appears to be longer than in the canonical channel
flow, as can be taken from figure 2(b). However, suction
alters the linear scaling coefficient emphasizing that it isnot
a purely viscosity induced effect.

The near-blowing-wall log-law has the following form

Ū+
1 =

1
κ

ln
(
x+2 +A+

)
+C+C1

(
v0

uτ

)
, (28)

hereκ andC are independent ofv0 and hence are univer-
sal constants obtained for the case without transpiration and
based on the globaluτ . The functionC1 vanishes for van-
ishingv0.

As no first principle idea is known to determine
C1(v0/uτ ) we employ a simple curve fitting procedure to
fit the new additive functionC1 which comes down to the
following power-law

C1(v
+
0 ) = α

(
v0

uτ

)β
, (29)

whereα =−90.62 andβ = 1.188.
The results from the DNS and the modified log-law

close to the blowing wall calculated from equation (28) with
A+ = 0 are compared in figure 3. We observe that for mod-
erate transpiration rates (0.05< v0/uτ < 0.1) the log region
does not change its size and location. However, for higher
transpiration rates the validity of the scaling region becomes
thinner and is shifted towards the core region of the chan-
nel. At high transpiration rates (0.16< v0/uτ < 0.26) which
results are not shown here, the near-wall log-region almost
vanishes, and cannot be validated with the expression (28).

The scaling law (23) obtained using Lie symmetry
method contains constantsA1,B1 andC1, that cannot be ob-
tained using Lie group analysis alone. For this reason one
of the main aim of the present study is to determine the con-
stants employing the DNS results.

The best fit to all DNS data is obtained if instead of
v0 we invokeuτ as the appropriate velocity scale. We re-
call thatuτ is a measure of the pressure gradient as the local
uτb anduτs on each wall are very different. The analysis
of the DNS results together with the employment ofuτ as a
scaling velocity forA1 leads to the fact that the overall scal-
ing appears rather insensitive to the Reynolds numbers and
the relative transpiration rates. The latter rescaling leads to
A1 = uτ/γ , whereγ = 0.3 has been taken from the DNS
data. Note that this is not the usual von Kármán constantκ.

An analysis of the present DNS data disclosedC1 to
be the bulk velocityUb (4) without an additional non-
dimensional pre-factor.

In its final form the new logarithmic scaling law for
the core region of the channel flow with wall transpiration
is found in deficit form

Ū1−Ub

uτ
=

1
γ

ln
( x2

h

)
. (30)

The new Lie symmetry induced scaling law (30) represents
the velocity defect law that scales the data in the whole core
region of the flow as may be taken from figure 4.

Conclusion
In the present paper we combined Lie symmetry anal-

ysis of the TPC equations and DNS to investigate the statis-
tical characteristics of the turbulent channel flow with wall
transpiration. Lie symmetry analysis revealed a new mean
velocity logarithmic type of scaling law that, afterwards,
has been confirmed in the center of the channel and studied
in detail by DNS. By using the new results from the DNS
data it was found, that the slope constant (γ) of the new log-
law is different from the von Kármán constant and that its
value isγ = 0.3. Presence of the transpiration makes the
log-region much longer than that of the velocity defect law
for the classical channel flow. The new scaling law covers
from 65% to 80% of the channel height depending on the
transpiration rate.

The classical near-wall scaling laws, i.e. the linear law
in the viscous sublayer and logarithmic law of the wall,
were validated though in slightly modified form. That in-
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Figure 4. Mean velocity profiles in(a) linear and(b) semi-log scaling. Solid lines correspond to the new log-law(γ = 0.3).
Dotted lines correspond to the mean velocity profiles. In thedirection of the arrow:v0/uτ = 0.05,0.1,0.16, Reτ = 480.

dicates that the permeability of the channel walls affects the
near-wall region and in particular the wall shear stress.

Further, it has been shown that the von Kármán con-
stant is universal in the near-wall region, while the additive
constantC had to be modified by the transpiration rate. A
near-wall log region persisted only on the blowing side and
only for moderate transpiration rates 0.05≤ v0/uτ ≤ 0.1.
An interesting conclusion that can be made from the figure
3 is that high Reynolds number and high transpiration rate
effects counter balance each other in the log-region. The
logarithmic region grows as the Reynolds number increase
and decreases at high transpiration rates. The most plausi-
ble explanation for this effect is that transpiration shifts the
buffer layer deep into the channel where the latter at high
transpiration rates directly meets the core region of the flow
and hence eliminating the logarithmic region.
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