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ABSTRACT
We present an experimental investigation and data

analysis of a turbulent boundary layer flow at a significant
adverse pressure gradient at Reynolds numberReθ = 10000
using large field PIV. The aim is to find a wall-law for the
mean-velocity in the inner layer. We consider scaling law
diagnostic functions together with the Millikan argument.
The inner part can be fitted by the log-law, but is progres-
sively reduced. In the outer part, the overlap layer, the log-
law ceases to be valid. Instead, a modified log-law gives a
good fit, which needs as parameters the pressure gradient
parameter and the mean inertial effects. We then attempt to
find a quantitative description which is local in wall-normal
direction without streamwise history effects.

INTRODUCTION
The statistically averaged behaviour of a turbulent

boundary layer subjected to a significant adverse pres-
sure gradient is still an open question. For a boundary
layer at zero-pressure gradient, we assume that the log-
law u+ = log(y+)/κ +B gives a proper description of the
mean velocity at sufficiently large Reynolds numbers, see
e.g. Österlundet al. (2000). There are different statements
in the literature concerning the law-of-the-wall in adverse
pressure gradient flows, see e.g. Alving & Fernholz (1995).
The first hypothesis is the log-law still holds and that slope
κ and interceptB still have the same value as for a flat-plate
turbulent boundary layer at zero pressure gradient (ZPG)
but that the region occupied by the log-law is progressively
reduced. Some authors propose that beyond the log-law re-
gion there is a so-called half-power law region characterized
by a shear stress growing linearly with the wall-distance,
see e.g. Brown & Joubert (1969). The second hypothesis is
that the log-law still holds but thatκ and B change their
values. Experimental results and DNS data give indica-
tions thatκ andB could change, see Nickels (2004). Some
publications propose a functional dependence on the so-

called pressure gradient parameter∆p+x = ν/(ρu3
τ )dp/dx,

see Nickels (2004). The third hypothesis by (among oth-
ers) Szablewski (1954), McDonald (1969) is that the pres-
sure gradient causes a continuous, general breakdown of the
log-law.

In order to shed some light on this question, by mak-
ing use of the enormous progress of non-intrusive optical
flow-field measurement techniques in the last years we de-
signed a new flow experiment. Several requirements on
the flow must be considered to prepare the desired flow
features within the experiment. 1. The flow should start
with a fully developed turbulent boundary layer at zero
pressure gradient with established log-law region. 2. The
Reynolds number needs to be sufficiently large such that a
sufficiently thick log-layer forms, sayReθ > 6000 accord-
ing to Österlundet al. (2000). 3. Downstream of this po-
sition of a well-defined inlet condition the flow enters into
the adverse pressure gradient section. The flow develop-
ment in streamwise direction should be slow, such that the
successive changes in the log-law can be tracked and his-
tory effects can be avoided. 4. The pressure gradient needs
to be sufficiently strong in order to cause changes from the
universal law-of-the-wall, say∆p+x > 0.015. 5. For the ex-
act behaviour of the wall-law slope parameters, e.g.κ, a
direct method for the wall-shear stressτw is needed. In this
work, we use different indirect methods forτw which will
be validated locally using a direct method later.

CLASSICAL THEORY
The turbulent boundary layer equations for the evolu-

tion of the wall-parallel mean velocity componentU in in-
compressible flows without external forces can be written
as

ν
∂ 2U

∂y2 − ∂u′v′

∂y
=

1
ρ

dP
dx

+ U
∂U
∂x

+ V
∂U
∂y

(1)
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where we neglectν∂ 2U/x2 and ∂u′u′/∂x. Integration of
(1) from the wall toy gives a relation for the total shear
stress. We use viscous (inner) scaling coordinatesu+ =
U/uτ , y+ = yuτ/ν, ∆p+x = ν/(ρu3

τ )dP/dx and I+cu(y
+) =

Icuu−2
τ , I+cv(y

+) = Icvu−2
τ where we write the integrated con-

vective (or: mean inertial) terms in the following form

Icu(y) =
∫ y

y′=0
U

∂U
∂x

dy′ , Icv(y) =
∫ y

y′=0
V

∂U
∂y′

dy′ .

Then from (1) a relation forτ is obtained

τ+(y+)≡
ν ∂U

∂y −u′v′

u2
τ

= 1+∆p+x y++ I+cu(y
+)+ I+cv(y

+) .

(2)
A scaling lawU(y) can be derived based on (2) together
with the eddy-viscosity assumption and a mixing-length
ansatz, see McDonald (1969), or by matching arguments
between inner and outer scaling, cf. Millikan (1938), Ger-
sten & Herwig (1992). Using the latter argument, the fol-
lowing diagnostic function should show a plateau in case
that the underlying scaling lawU(y) is satisfied

Ξ =
y+√

τ+(y+)
du+

dy+
=

1
κ

(3)

This argument involvesτ, and using the present experimen-
tal data we will study whether the full form (2) or a lin-
earized approximation forτ, e.g. by McDonald (1969)

τ+(y+)≈ 1+λ∆p+x y+ (4)

is the proper choice within (3). McDonald (1969) approxi-
mates the effects of the convective term in (4) usingλ = 0.7
for flows at mild pressure gradient near equilibrium. Inte-
gration of (2) yields, cf. e.g. Skote & Henningson (2002),

u+ =
1

Ko
log(y+)+

2
Ko

[

√
1+λ∆p+x y+−1

+ log

(
2√

1+λ∆p+x y++1

)
]+Bo. (5)

The theoretical mean velocity gradients correspond-
ing to the log-law and (5) become 1/(κy+) and√

1+λ∆p+x y+/(Koy+).

A LOCAL MODEL FOR THE SHEAR STRESS
At this stage, the solutions forU and τ in (2), (4)

and (5) are mutually coupled. The idea is now to use the
linearized model (4) and to relateλ in (4) to the mean
velocity profile by approximating the exact mean inertial
terms. We follow van den Berg (1973) and assume that
the velocity profile in the inner region can be described
asU(x,y) = uτ (x) f (y+(x,y)) , y+(x,y) = uτ(x)y/ν, giving
∂y+/∂y= uτ/ν and∂y+/∂x= y/νduτ/dx. Then

∂U
∂x

=
duτ
dx

[
f +y+

d f
dy+

]
,

∂U
∂y

=
u2

τ
ν

d f
dy+

−6.11 0 6.38 8.667.88 10.16

x [m]

2D2C−PIV stereo−PIV

U

11.66

Figure 1. Sketch of the flow experiment and the PIV sys-
tems used (top view) at UniBw.

andV is obtained using the continuity equation. Substitu-
tion into (2) gives

τ+(y+) = 1+αy+ +β I1 (6)

with pressure gradient parameterα, wall shear stress gradi-
ent parameterβ andI1 defined by

α ≡ ∆p+x =
ν

ρu3
τ

dP
dx

, β =
ν
u2

τ

duτ
dx

, I1 =
∫ y+

0
f 2dy+ .

This gives a model to relate the mean inertial terms to the
streamwise gradient of the wall shear stress gradient.

As an extension, we assume thatf becomes also
a function of the pressure gradient parameterα, i.e.,
U(x,y) = uτ (x) f (y+(x,y),α(x)) leading to

τ+(y+) = 1 + αy+ + β I1 + γ I2 (7)

with an additional parameterγ =−3αβ +α∗, α∗ = ν/uτ ×
ν/(ρu3

τ ) d2P/dx2, where the role of d2P/dx2 is discussed
e.g. in Hanjalicet al. (1999). IntegralI2 is given by

I2 = 2
∫ y+

0
f

∂ f
∂α

dy+ − f
∫ y+

0

∂ f
∂α

dy+ .

Here∂ f /∂α may be evaluated e.g. by using a simple com-
posite profile for f consisting of Chauhanet al. (2009) in
the inner part of the inner layer and (5) in the outer part.

EXPERIMENTAL SETUP
The aim of this experiment was to enable PIV measure-

ments in the inner part of the boundary layer by using rela-
tively small onflow velocities and by making the Reynolds
length and henceδ99 large. This also ensures a largeReθ ,
i.e., a sufficiently large overlap layer, see Knopp (2011).

The experiments were performed in the Eiffel type at-
mospheric wind tunnel of the UniBw in Munich. The fa-
cility has a 22-m-long test section with a rectangular cross-
section of 2× 2m2. The experiments were performed at
three different onflow velocities, viz.,U∞ = 6m/s, U∞ =
9m/s, andU∞ = 12m/s. The geometry is mounted ver-
tically into the center of the tunnel, as shown in Fig. 1,
see Dumitraet al. (2011) for details. Starting with a super-
elliptic nose and a subsequent tripping from laminar to tur-
bulent flow, the flow first develops over a flat plate of length
6m and reachesReθ = 8000 forU∞ = 12m/s. Then the flow
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enters into an adverse pressure gradient section via a deflec-
tion of lengthl = 1.5m and a subsequent inclined flat plate
of lengthl = 0.8m at an opening angle of 13◦ with respect to
the first flat plate. We reachReθ = 10000 atx= 7.38m for
U∞ = 12m/s. The contour geometry was designed using
the DLR TAU code, see Knopp (2011), using the Spalart-
Allmaras and the SSTk-ω RANS turbulence model to take
into account the criteria explained in the introduction.

MEASURING TECHNIQUE
For the measurement technique, particle image ve-

locimetry (PIV) was used for the mean velocity and for
the Reynolds stresses determination. Eight PCO 4000 cam-
eras with a resolution of 4008× 2672 px each were used
side by side and the mean velocity fields were calculated by
averaging of up to 9000 independent velocity fields. This
experimental arrangement using the lightsheets of two in-
dependent double pulse lasers enabled to measure instan-
taneous velocity fields with 2D2C-PIV fromx = 5.81m to
x = 8.65m, see Fig. 1. Moreover, stereo-PIV (2D3C-PIV)
measurements were performed in two measurement win-
dows at the end of the long flat plate and in the expansion
region.

RESULTS AND ANALYSIS
In the present work we focus on the adverse pres-

sure gradient region. The pressure gradient parameter∆p+x
along the contour is shown in Fig. 2. At present,uτ is
determined only indirectly using a standard and modified
Clauser chart, as described in the next subsection. In order
to validate the indirect method, we additionally performed
measurements using long-range-microscope PIV (LR-PIV),
but their postprocessing is not yet finished.

x [m]
7.4 7.6 7.8 8

-0.02

0

0.02

0.04

0.06
α=∆px

+=ν/(ρuτ
3)dP/dx

500*β, β=νuτ
-2 du τ/dx

104*γ, γ=-3αβ+α*

104*α*, α*=ν2/(ρuτ
4)d2P/dx2

Figure 2. Characterization of the flow using pressure gra-
dient parameterα ≡ ∆p+x , streamwise acceleration param-
eterβ , α∗ ∼ d2P/x2 and higher order parameterγ .

A COMPOSITE SCALING LAW FOR THE IN-
NER LAYER

In the adverse pressure gradient region, the mean ve-
locity profile can be described by a composite law as pro-
posed by Brown & Joubert (1969) fory+ ' 100 andy/δ99/
0.2. In its inner part, the velocity profile can by fitted by a
log-law whereas in the outer part, an extended log-law (5)
gives a suitable scaling, see Fig. 3 and Knoppet al. (2012).

y+

u+

100 101 102 1030

10

20

30

Exp., RETTINA
log-law, κ, B fitted
mod. log-law, κ, B fitted
visc. sublayer by Nickels

Figure 3. Composite structure of the mean velocity profile
at x= 7.61m at adverse pressure gradient∆p+x = 0.0156.

SCALING IN THE INNER PART OF THE INNER
LAYER

In the inner part of the inner layer, we observe that the
velocity profiles can be fitted using a log-law

u+ =
1
Ki

log(y+)+Bi (8)

in a thin region aroundy+ = 100. This region will be
called the log-law fit region. For the stationx = 7.73m
where∆p+x = 0.0202 this region is located at 4.0mm< y<
7.0mm≈ 0.05δ99.5 or 80< y+ < 140 , see Fig. 4. We de-
termineuτ using a standard and a modified Clauser chart
method similar to the method by Dixit & Ramesh (2009),
and we find that the values obtained forKi are not very sen-
sitive w.r.t. the method to determineuτ . We observe a sys-

y+

u+

100 200 300
14

16

18

20

22 exp.
log(y +) / 0.384 + 4.17
log(y +) / 0.367 + 3.57

Figure 4. Log-law fit to the experimental data in the so-
called log-law fit region aroundy+ = 100 in the adverse
pressure gradient region atx= 7.73m with∆p+x = 0.0202.

tematic reduction ofKi with increasing∆p+x and that the
correlation by Nickels (2004) gives a good quantitative de-
scription. Fig. 5 shows the data for the present experiment
atU∞ = 12m/s and for some data evaluated from literature.
At this point, some words of caution are needed. The value
for Ki given in Fig. 5 has to be seen as a fitting parame-
ter for the inner part of the inner layer. It is not a general
parameter for the entire overlap region as the von Kármán
constantκ in zero-pressure gradient boundary layer flow.
In the log-law fit region, we do not have a clear plateau in
Ξlog = y+du+/dy+, see Fig. 6. Thus the log-law fit is only
an approximative description andKi cannot be determined
in a strict way. Furthermore the log-law fit region is rather
thin and its outer limit cannot be extended by increasingRe
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0.35

0.4

0.45

0.5

0.55 Nickels (2004) correlation
Warnack & Fernholz FPG (exp.)
Dixit & Ramesh FPG (exp.)
Jones FPG (exp.)
Spalart FPG (DNS)
Present RETTINA exp, U=12m/s
Spalart & Leonard (DNS)
Manhart & Friedrich APG (DNS)

Figure 5. Variation ofKi vs. ∆p+x in the log-law fit region
for the present experiment and for some data evaluated from
literature.

like in the zero-pressure gradient case, since it is progres-
sively reduced due to the adverse pressure gradient. More-
over it occupies ay+-range, which is for zero-pressure gra-
dient flows influenced by low-Re effects according to Wei
et al. (2005a), Wei et al. (2005b) and Marusicet al. (2012).
Albeit, we showed in Knoppet al. ((submitted) that the be-
haviour of this fit-Ki is relatively robust w.r.t. details how it
is determined.

y+

Ξ lo
g-1

200 400 600 800

0.1

0.2

0.3

0.4

0.5

0.6 Chauhan
exp.
ulog,mod , λ=0.6

Figure 6. Diagnostic functions for the log-law applied to
the experimental data in the adverse pressure gradient re-
gion atx= 7.71m with∆p+x = 0.0192.

Mean momentum balance
The aim is now to undestand how the modified log-law

(5) can give a reasonable description of the velocity gra-
dient in the overlap layer, see Fig. 6. In the first step we
want to identify the dominant terms of the mean momen-
tum balance (1) which need to be taken into account into
a simplified model (4). We consider the stereo-PIV data
at x = 8.07m where∆p+x = 0.034. The different terms of
eq. (1) are shown in Figure 7. We see that the viscous
stress gradient−ν∂ 2U/∂y2 and∂u′u′/∂x are much smaller
than the pressure gradient and the mean inertial terms, albeit
the viscous stress gradient cannot be resolved fory+ < 20.
The mean momentum balance is significantly altered due to
the adverse pressure gradient compared to the zero pressure
gradient case, see e.g. Weiet al. (2005a). Moreover we see
thatV∂U/∂y is of the same size asU∂U/∂x and that the
mean inertial terms are of the same order of magnitude as
the pressure gradient term. The Reynolds shear stress gradi-
ent∂u′v′/∂y can be reconstructed from the remaining terms
in (1) and reaches its first zero aty+ ≈ 500 whereu′v′ has
its first maximum.

y+
0 500 1000

-0.05

0

0.05

0.1

dp/dx
-νd2U/dy2

d<u’u’>/dx
d<u’v’>/dy
U dU/dx
V dU/dy
U dU/dx + V dU/dy
d<u’v’>/dy (reconstructed)

Figure 7. Order of magnitude analysis of the different
terms in eq. (1) from the stereo-PIV data atx = 8.07m
where∆p+x = 0.034.

REYNOLDS SHEAR STRESS PROFILES
The second step is to find some approximative model

for the shear stressτ+(y+). This is needed in order to assess
the Millikan scaling law argument (3) and the linearized
stress relation (4). We also compareτ = νdU/dy−u′v′ with
different proposals to reconstructτ, e.g., from the exact bal-
ance (2) or some approximation (6), (7).

The reconstructions based on the exact termsIcu and
Icv are computed by numerical integration using the PIV
data forU andV including the exact gradients∂U/∂x and
∂U/∂y. In the near wall region where the PIV data are
not accurate enough, we use the profile by Chauhanet al.
(2009). It becomes clear thatIcv cannot be neglected for
y+ > 150. The reconstructions based on the (6), (7) also
use the PIV data forU andV in I1 and in the near wall
region we use the profile by Chauhanet al. (2009). ForI2
we use (5) withλ = 0.4 to estimate∂ f /∂α. Moreover we
need to computeα, β andγ , which are shown in Fig. 2.

It can be seen from Fig. 8 that the estimate (6) is al-
ready a good approximation for the shear stress. The ex-
tended model (7) approximates the exact reconstruction (2)
also fory+ ' 300. However, fory+ ' 250 we also observe
some deviation betweenτ = νdU/dy−u′v′ and (2), which
is not understood so far. We emphasize that both estimates
(6) and (7) considerably improve the approximation ofτ
compared to the linear-stress relation 1+∆p+x y+ which ne-
glects the effects of the mean inertial terms completely.

y+

τ+

0 500 10000

5

10

15 τ+=du+/dy+-<u’v’> +

τ+=1+αy+

τ+=1+αy++βI1

τ+=1+αy++βI1+γI2

τ+=1+αy++Icu

τ+=1+αy++Icu+Icv

Figure 8. Comparison ofτ = νdU/dy−u′v′ with different
proposals for reconstruction using (2) and (6), (7) atx =

8.08m where∆p+x = 0.0344.
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SCALING IN THE OUTER PART OF THE
OVERLAP LAYER

In the third step we consider the scaling law argument
(3) which relates the gradient of the mean velocity profile,
the wall distance and the shear stressτ, see Fig. 9. The aim
is to find a proper choice forτ in (3). When usingτ based on
the exact profile ofτ = νdU/dy−u′v′ and also based on the
different reconstructions (2) and (6), (7), we do not obtain
a plateau inΞ. From this we infer that the exactτ+(y+)
is not the suitable choice forτ in the scaling argument (3).
On the other hand, the linearized modelτ = 1+λ∆p+x y+

does give a plateau. This gives a motivation to assume a
linearized stress relation (4) in the wall-law (5).

The fourth step is to identify the parameterλ in the
linearized modelτ = 1+ λ∆p+x y+. It can be seen from
Fig. 8 thatτ+ grows slower than 1+∆p+x y+ with increasing
y+ and also that the wall-normal stress gradient∂τ+/∂y+

decreases with increasingy+ compared to∆p+x , see also
Fig. 7. Hence a value ofλ smaller than 1 is expected. Thus
λ describes the effect of the mean inertial terms on the wall-
normal shear stress gradient.

y+

Ξ-1

500 10000

0.2

0.4

0.6

τ+=du+/dy+-<u’v’> +

τ+=1+αy+

τ+=1+0.7αy+

τ+=1+αy++βI1+γI2

τ+=1+αy++Icu+Icv

τ+=1

Figure 9. Comparison of slope diagnostic functionΞ with
different proposals forτ in (3) using (2) and (6), (7) atx=
8.07m where∆p+x = 0.0342.

y+

Ξ-1 lo
g,

m
od

500 1000

0.2

0.4

0.6

0.8

1 exp., λ=0.2
exp., λ=0.6
exp., λ=1.0
lin. regression, λ=0.2
lin. regression, λ=0.6
lin. regression, λ=1.0

Figure 10. Diagnostic functions for the modified log-law,
see Eq. (3), applied to the experimental data in the adverse
pressure gradient region atx= 7.71m with∆p+x = 0.0192.

Regarding the diagnostic function (3), the choice forλ
in (4) effects the plateau value forKo. Decreasing the value
for λ gives a lowerKo as shown in Fig. 10.

Now we focus on the wall-normal stress gradient
∂τ+/∂y+. We write λ ≡ (∂τ+/∂y+)/∆p+x . At the posi-
tion x = 8.07m direct data foru′v′ are available. The exact
reconstruction (2) and the approximation (6) give a quite

good agreement whereas (7) is little larger. Atx = 7.75m,
data foru′v′ are not available and we use (2) as a reference.
The approximation (7) is given for two different values of
λ and both choices are closer to (2) than (6) fory+ > 150.

y+

dτ
+
/d

y+
/∆

p
x+

0 200 400 600-0.5

0

0.5

1 τ+=du+/dy+-<u’v’> +

τ+=1+αy++βI1

τ+=1+αy++βI1+γI2

τ+=1+αy++Icu+Icv

Figure 11. Comparison of∂τ/∂y with different recon-
structions (2), (6), (7) atx= 8.07m where∆p+x = 0.0342.

y+

dτ
+
/d

y+
/∆

p x+

0 200 400 6000

0.2

0.4

0.6

0.8

1 τ+=1+αy++Icu+Icv

τ+=1+αy++βI1

τ+=1+αy++βI1+γI2, λ=0.4
τ+=1+αy++βI1+γI2, λ=0.6

Figure 12. Comparison of different reconstructions (2),
(6), (7) for∂τ/∂y atx= 7.75m where∆p+x = 0.0208.

The last step is to assess the linearized shear stress
model modelτ = 1+λ∆p+x y+. We obtain a reasonable lin-
ear fit to the shear stressτ usingλ = 0.45 found from Fig.
11 in the region betweeny+ = 100 andy+ = 150, as shown
in Fig. 13. This linear approximation forτ is then used in
the scaling law ansatz (3).

y+

τ+

0 500 10000

5

10

15
τ+=du+/dy+-<u’v’> +

τ+=1+αy+

τ+=1+0.45αy+

τ+=1+αy++βI1

τ+=1+αy++βI1+γI2

τ+=1+αy++Icu

τ+=1+αy++Icu+Icv

Figure 13. Comparison ofτ = νdU/dy− u′v′ with lin-
earized model (4) usingλ = 0.45 obtained in the previous
step aty+ ≈ 150 and different proposals for reconstruction
using (2) and (6), (7) atx= 8.08m where∆p+x = 0.0344.
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We can use this linearized model forτ for a predictor-
corrector type method foru+(y+) in (5) and the parameter
λ . Here we assume thatα, β andγ are given.

1. Compute a first estimate forτ+(y+) using Eq. (6) with
u+(y+) given by the wall law of Chauhanet al. (2009)

2. Compute∂τ+/∂y+ in the region 100< y+ < 200 and
setλ = (∂τ+/∂y+)/∆p+x

3. Computeu+(y+) in (5) with λ from step 2.
4. Compute an improvedτ+(y+) using (7) andu+(y+)

from step 3.
5. Compute∂τ+/∂y+ in the region 100< y+ < 200 from

step 4 and setλ = (∂τ+/∂y+)/∆p+x
6. Computeu+(y+) in (5) with λ from step 5.

CONCLUSION
We presented the analysis of experimental data of a

turbulent boundary layer at a significant adverse pressure
gradient using large-scale 2D2C-PIV and stereo-PIV. The
mean velocity profiles in the inner layer can be described
by a composite velocity profile similar to Brown & Jou-
bert (1969). The inner part can be described as a “log-law
fit” region with slopeKi changing w.r.t.∆p+x as proposed
by Nickels (2004). The outer part can be described by the
modified log-law (5) by McDonald (1969), whose main pa-
rameters are the pressure gradient parameter∆p+x and the
shear-stress gradient parameterλ , which describes how the
wall-normal shear stress gradient is influenced by the mean
inertial terms. We extend the work by McDonald (1969) to
account for the effect of the mean inertial terms on the shear
stress gradient depending on the flow conditions instead of
assuming it to be a constant fraction of∆p+x . For this pur-
pose, we use and extend a simple model by van den Berg
(1973) which is local in wall-normal direction and without
streamwise history effects. This model enables a reasonable
approximation for the wall-normal shear stress distribution
and for the shear-stress gradient parameterλ .

For future work, we plan to validate the present model
using the data for the two other onflow velocities,U∞ =
6m/s andU∞ = 9m/s. Moreover, we plan to validate the
indirect method foruτ using directly measured data from
LR-PIV in conjunction with a particle tracking velocimetry
for post-processing, see Kähleret al. (2012).
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