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ABSTRACT
An analytical model proposed by Lysak to evaluate the

wall pressure fluctuation spectrum and variance for pipe
flows was extended to use it as a post-processor of RANS
computations, whatever the turbulence model.

The model fairly reproduces key features of the wall
pressure spectrum such as the f 2 behaviour in the low fre-
quency range, the inertial f−1 region and the viscous cut-
off. The model allows identifying the contribution of each
part of the boundary layer to the wall pressure spectrum.

The model was validated for zero pressure gradient
boundary layer flows. For adverse pressure gradient bound-
ary layers, departures from experiments are observed and
several plausible causes are pointed out.

INTRODUCTION
Aero-acoustics applications as well as fluid/structure

coupling require information about the wall pressure spec-
trum. Such data are not directly provided by RANS compu-
tations which remain nowadays the industry workhorse but
require turbulence resolving approaches which are much
more expensive. However, models were proposed to derive
the wall pressure spectrum from averaged quantities. Re-
cently, Lysak (2006) proposed such a model for pipe flows.
The present work addresses the extension of Lysak model
to use it to post-process RANS computations.

LYSAK MODEL
Lysak model for the wall pressure variance is based

upon classical arguments which will be shortly reminded
and discussed below. The reader should refer to Lysak
(2006) for more information.
• The Poisson equation is deduced from the Navier–

Stokes equations. For incompressible flows, it relates
the pressure at a given point to the velocity field in the
whole domain. Following Kraichnan’s proposal (1956)
(see Willmarth (1975)), Lysak only retains the linear term
linked to the mean velocity gradient, although the turbu-
lence/turbulence term, or non-linear term, in the Poisson
equation has been shown to affect the low frequency part
of the spectrum (Lee et al., 2005).
• Assuming that the wall normal pressure gradient is

null at the wall allows to get rid of the surface integrals in
the Green operator used to solve the Poisson equation, so
that the wall pressure is expressed with the help of only one
volume integral.

• Assuming homogeneity in planes parallel to the wall,
this volume integral reduces to an integral along the wall
normal.
• The problem is translated to the Fourier space and

is strongly simplified assuming that the two point velocity
correlation is symmetric, a doubtful assumption for wall tur-
bulence.
• Taylor’s hypothesis is used to assume that turbulence

is frozen and convected at the local average speed. A von
Kármán spectrum is used to represent the turbulent field.
Such a spectrum fairly describes isotropic turbulence but its
use is much more questionable for wall turbulence.

The final model reads
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∫ ∞
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where Φpp is the wall pressure spectrum, ω the frequency.
The model only requires the knowledge of the mean

velocity U and its gradient along the wall normal ∂U
∂y while

the turbulent motion is described by the diagonal stress
along the wall normal direction < v′2 > and a characteristic
wave number κe in the von Kármán spectrum.

The integration of the spectrum Φpp with respect to the
frequency ω provides the wall pressure variance < p′2 >.

MODEL EXTENSIONS
Extension to three-dimensional flows

Lysak developed his model for two-dimensional pipe
flows. The model is really interesting for practical applica-
tions only if it can be applied to any three-dimensional wall
flow. The derivation for three-dimensional flows is similar
to the original one and lengthy, so that it will not be repro-
duced here. Denoting U and W the velocity vector compo-
nent in a plane parallel to the wall, the final model reads

Φpp(ω) ≈ 3ρ2
∫ ∞
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Coupling with turbulence models
Lysak used simple representations for the turbulent

motion in pipe flows and so analytically prescribed the
Reynolds stress < v′2 > and wavenumber κe distributions.
These data have here to be derived from information avail-
able in a RANS computation.

The analysis of DNS of two-dimensional zero pres-
sure gradient (Spalart, 1988) and adverse pressure gradi-
ent (Skote & Henningson, 2002) boundary layers as well
as pipe flows (Jimnez & Hoyas, 2008) showed that, for two-
dimensional flows, the Reynolds stress < v′2 > is better cor-
related with the turbulent shear − < u′v′ > than with the
turbulent kinetic energy k. The model used hereafter reads

< v′2 >=Cv2(−< u′v′ >) Cv2 = 1.3 (2)

which fairly reproduces data, except very close to the wall
where < v′2 >∝ y4 while−< u′v′ >≈ y3 so that Cv2 should
drop down to zero. No ad-hoc treatment was introduced to
cope with the decrease of < v′2 > close to the wall.

Following Lysak, the characteristic wavenumber is re-
lated to the turbulent kinetic energy k and its dissipation
rate ε through the relation

κe =Ck
ε

k3/2
Ck = 1.9 (3)

Assuming a simplified spectrum shape, with two power
laws

E(κ) =

{
Aκs if κ ≤ κe

K0ε2/3κ−5/3 if κ ≥ κe
(4)

the characteristic wavenumber κe reads

κe =

(
3s+5

2(s+1)
K0

)2/3 ε
k3/2

(5)

von Kármán spectrum corresponds to an infrared exponent
s = 4. With K0 ≈ 1.4, the above formula yields Ck ≈ 1.78.
As 1≤ s≤ 4, thus 1.78≤Ck ≤ 2 so that the value proposed
by Lysak is fair.

Numerical implementation
Equation (1) requires a double integration and is rather

complicate to compute accurately. Monte-Carlo method is
often used, which is rather time consuming. The use of von
Kármán’s spectrum leads to the peculiar form of the I in-
tegral which can be used to simplify computations. Setting
Y = 2α

√
ξ 2 +ζ 2−2αξ , this integral reads

I(ξ ,α) =
exp(−2αξ )

α
(6)

∫ ∞

0

exp(−Y )
[

1+
(

Y +2αξ
2α

)2
]17/6

Y +2αξ√
Y 2 +4αY ξ

dY

which can easily be evaluated using Gauss-Laguerre for-
mula

∫ ∞

0
exp(−x) f (x)dx≈

i=n

∑
i=1

Ai f (xi) (7)

f+

φ p+

10-6 10-5 10-4 10-3 10-2 10-1 10
10-6

10-4

10-2

100

102

104 Rθ = 104

Rθ = 105

Rθ = 106

Figure 1. Non dimensional spectra using wall scaling

It was checked that a set of twelve points xi was enough to
achieve an excellent accuracy in all situations.

APPLICATION TO ZERO PRESSURE GRADI-
ENT BOUNDARY LAYERS
Introduction

All wall pressure computations presented below rely
upon boundary layer computations performed using the
ONERA boundary layer software CLICET (Aupoix, 2010).
This code has a self adaptive grid and it was checked that the
results were insensitive to the selected grid option (standard
or fine). Spectra computations were performed using four
points per octave but it turned out that the same accuracy
could be achieved with only one point per octave!

Results obtained using the Launder & Sharma (1974)
k− ε model are first discussed. Extension to other turbu-
lence models is addressed afterwards.

Spectrum predictions
Zero pressure gradient boundary layers have been com-

puted for Reynolds numbers based upon the momentum
thickness Rθ = 104, 105 and 106. Spectra obtained from the
boundary layer profiles are plotted in figure 1. The spectra
Φp( f ) = 4πΦpp(ω) are plotted w.r.t. the frequency f = 2π

ω
in figure 1, using wall scaling. Scaling based upon the ex-
ternal velocity and the boundary layer thickness or the dis-
placement thickness tend to collapse the low frequency part
of the spectrum, but not perfectly. As expected, the higher
the Reynolds number, the thicker the boundary layer and the
lower the most energetic frequencies. As expected, a f 2 be-
haviour is obtained in the low frequency range (Bradshaw
et al., 1967; Farabee & Casarella, 1991) together with a f−1

inertial range (Bradshaw et al., 1967; Panton & Linebarger,
1974). The viscous region falls steeper than the often pro-
posed f−5 law. The predicted inertial range can be approx-
imated by

Φ+
p =

2.6
f+

Φ+
p =

Φp

µτw
f+ =

f µ
τw

(8)

the coefficient 2.6 being in the range of experimental data.
Predictions have first been validated w.r.t. experimen-

tal spectra. A nice agreement with Gravante et al. (1998)
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Figure 2. Wall pressure fluctuation spectra –Gravante et
al. experiment
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Figure 3. Contributions of the various parts of the bound-
ary layer to the wall pressure spectrum

experiment, for Rθ = 7076 is shown in figure 2. It must
be mentioned that the Farabee & Casarella (1991) experi-
ment was also computed and evidenced significant differ-
ences in the low frequency part of the spectrum, which may
be linked to free-stream turbulence.

Lysak (2006) points out that contributions to the wall
pressure fluctuations are mainly due to the wall turbulence
thanks to the exp(−2κy) term while Farabee & Casarella
(1991) identify contributions from all regions of the bound-
ary layer. Figure 3 provides an analysis of the contributions
of the various regions in the boundary layer, for Rθ = 106.
Each “spectrum” plotted in this figure corresponds to an in-
tegration from the wall up to a given altitude. This figure
clearly shows that
• the high frequency, viscous cut-off of the spectrum is

the contribution of the viscous and buffer regions (y+ ≤ 50),
• the logarithmic region provides the inertial ( f−1) part

of the spectrum,
• the wake region corresponds to the departure from

the inertial spectrum and to the low frequency range,
• whatever the integration altitude, the low frequency

part of the “spectrum” exhibits a f 2 behaviour.
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Figure 4. Evolution of the wall pressure variance the
boundary layer thickness

The present result supports Lysak’s analysis but does
not fully contradict Farabee & Casarella (1991) one. It must
be reminded that turbulence models do not account for the
inactive motions, the signature of which appears in the wall
pressure. Moreover, Farabee & Casarella (1991) identified
the outer layer intermittency as a source of wall pressure
fluctuations, and this phenomenon is not accounted for too.

Wall pressure variance predictions
The wall pressure variance can be obtained from the

integral of the spectrum as

〈
p′2
〉
=
∫ ∞

0
Φp( f )d f or

〈
p′2
〉+

=
∫ ∞

0
Φ+

p ( f )d f+

(9)
The above analysis of the contributions of the various parts
of the boundary layer shows that this integral can be split
into three parts: the low frequency part linked to the wake
contribution, the inertial range linked to the logarithmic re-
gion and the viscous part. Therefore, for a high Reynolds
number, zero pressure gradient boundary layer, the viscous
and low frequency contributions are constant, so that the
wall pressure variance can be approximated as

< p′2 >+= A+B lnδ+ (10)

The evolution of the pressure variance is plotted versus
the boundary layer thickness in figure 4, using wall scaling.
Several experimental data are plotted, the difference in the
two data sets by Bull showing the strong influence of the
sensor. The Farabee & Casarella (1991) correlation

< p′2 >+=





6,5 δ+ ≤ 333

6,5+1,86log
δ+

333
δ+ > 333

δ+=
δuτ
ν

(11)
which could be considered as a reference, is also plotted
as well as two other correlations from Hu et al. (2006) and
Olivero (cited by Goody (2002)). The present model predic-
tions are within the experimental scatter and can be fitted by
the following relation

< p′2 >+=−6.4+2.3lnδ+ (12)
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Figure 5. Influence of the turbulence model on the spec-
trum prediction
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Figure 6. Influence of the turbulence model on the wall
pressure variance prediction

i.e. a steeper slope than Farabee and Casarella correlation.
An underestimation was expected as the non-linear term in
the Poisson equation was neglected while the inactive mo-
tions and the outer layer intermittency are not accounted for
in a RANS model.

Influence of the turbulence model
Up to now, only the Launder & Sharma (1974) k− ε

model was considered. The method was coupled with a
large variety of turbulence models, namely k− ε models by
Jones & Launder (1972) (hereafter denoted JL), Launder &
Sharma (1974) (LS) and Chien (1982) (Ch), k−ω mod-
els by Wilcox (1988) (Wi88) and BSL and SST variants by
Menter (1994) and k−L model by Smith (1995) (Sm95).

An important issue is the determination of the dis-
sipation rate ε to be used to determine the characteristic
wavenumber κe. In many turbulence model, the turbulent
kinetic energy equation reads

Dk
Dt

= Pk− ε−D+div
[(

ν +
νt

σk

)
gradk

]
(13)

where Pk stands for the turbulent kinetic energy production
rate, ε the dissipation rate provided by the length scale de-
termining equation and D is a near wall dissipation term. It
has been shown that using ε +D as the dissipation in the
evaluation of the characteristic wavenumber κe yields the
best behaviour, whatever the turbulence model. Differences
are negligible for the Launder and Sharma model while they
are larger for the Chien model.

Spectra obtained with the various k−ε and k−L mod-
els are plotted in figure 5 for Rθ = 106. A fair collapse is
obtained for all turbulence models, including k−ω mod-
els (not shown), all models predicting nearly the same k2

low frequency spectrum and k−1 inertial spectrum. The big
difference lies in the transition between the inertial and vis-
cous ranges of the spectrum and reflect differences in the
wall region treatment among the models. Jones and Laun-
der, Chien and Smith models exhibit a more pronounced
and unrealistic bump compared to the Launder and Sharma
model while k−ω models, which underestimate the tur-
bulence in the wall region, exhibit no bump and predict a
slightly stronger viscous fall. As the inertial/viscous tran-
sition lies in the high frequency regime, its contribution to
the integral, i.e. to the pressure variance, is significant. This
leads to large differences between the model predictions of
the wall pressure variance, as shown in figure 6. The iner-
tial range solution being the same, all models give the same
slope but the behaviour in the transition region directly gov-
erns the level (A in equation (10)). k−ω models yield lower
levels, in the bottom range of experimental data, Jones and
Launder or Smith’s models are on the top of the experimen-
tal data while Chien model predictions are out of the figure.
This shows the strong influence of the near wall region. As
most of the assumptions made, such as the use of a simpli-
fied velocity spectrum, the symmetry of the two-point cor-
relation or the relation for < v′2 > are poor approximations
in this region, further development in the closures in the
viscous and buffer region are recommended.

Influence of model coefficients
The influence of the two constant Cv2 and Ck intro-

duced to express the Reynolds stress < v′2 > and the char-
acteristic wavenumber κe has also been investigated. As
can be seen from (1), the Reynolds stress < v′2 > only
has a multiplicative rôle while the influence of κe is much
more complex. Therefore, Cv2 acts as a multiplicative con-
stant. Damping it in the buffer and viscous layer is a legit-
imate and efficient way to suppress the bump in the spec-
trum at the transition between the inertial and viscous parts.
It was shown that Ck strongly affects the predictions. A
value of Ck = 2.0 nearly collapses the model predictions
obtained with the Launder and Sharma model with Farabee
and Casarella correlation. The model behaviour can be
summarized as

< p′2 >+=Cv2

[
A(Ck,Turbulence model)+B(Ck) lnδ+

]

ADVERSE PRESSURE GRADIENT BOUND-
ARY LAYER

Very few detailed experiments are devoted to wall pres-
sure measurements for adverse pressure gradient boundary
layers. This lead us to select the experiment by Simpson
et al. (1987), dealing with an accelerated and then deceler-
ated and separated boundary layer. Only the region up to the
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Figure 7. Displacement thickness predictions – Simpson
et al. experiment

X (M)

C
f/2

0 1 2 3
0

0.0005

0.001

0.0015

0.002

Exp.
Wilcox88
BSL Menter
SST Menter
Smith95

Figure 8. Skin friction coefficient predictions – Simpson
et al. experiment

separation point can be computed with the boundary layer
approach. Pressure measurements are available only in the
decelerated and separated parts. However, it turned out that
the boundary layer was not an equilibrium one because of
the succession of acceleration and deceleration so that the
whole boundary layer development had to be computed.
The initial boundary layer thickness had to be tuned to re-
trieve the correct displacement thickness at the beginning
of the deceleration. Only displacement thickness and skin
friction coefficient are available at several measurement sta-
tions to characterize the boundary layer development. As
expected, k− ε models overestimate the skin friction co-
efficient and underestimate the displacement thickness. But
even k−ω and k−L models, which are good models to pre-
dict adverse pressure gradient flows, fail to reproduce the
experiment, as shown in figures 7 and 8. The small differ-
ences between BSL and SST models predictions shows that
the adverse pressure gradient is not very severe and that the
discrepancy, mainly on the displacement thickness, could
be blamed upon uncertainties in the external flow distribu-
tion.

The pressure variance evolution is plotted in physical
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Figure 9. Wall pressure variance evolution – Simpson et
al. experiment
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Figure 10. Wall pressure variance (in wall units) evolution
– Simpson et al. experiment

units in figure 9 and using wall scaling in figure 10. The
differences in the levels for zero pressure gradient bound-
ary layers are retrieved at the initial station, from low levels
for k−ω models to a high level for the Chien model. But
all models fail to reproduce the experimental increase of the
pressure variance and predict a decrease. Using wall scal-
ing, an increase is observed, thanks to the decrease of the
wall shear stress, but the pressure variance remains under-
estimated.

Various attempts were performed to try to improve the
model predictions:
• the EARSM model by Wallin & Johansson (2000)

was used to better estimate the Reynolds stress < v′2 >,
• the length scale and thus the characteristic wave num-

ber κe was analytically prescribed, based upon the bound-
ary layer characteristics, instead of using the values deduced
from the turbulence model,
• the Taylor hypothesis was replaced by several models

linking the convection velocity of the turbulent structures to
the external flow velocity.

The first two modifications yield insignificant changes
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in the predictions of the wall pressure variance while the
last one strongly deteriorates the predictions, leading to a
stronger decrease of the pressure variance.

The poor predictions can thus be blamed upon various
causes:
• A wrong pressure gradient distribution as models

under-predicted the displacement thickness evolution,
• An increasing rôle of the non-linear term, which was

discarded, for adverse pressure gradient boundary layers as
the velocity profile is significantly changed w.r.t. zero pres-
sure gradient boundary layers. The approach could be ex-
tended to account for the non-linear term, with some crude
assumptions, but this requires significant developments.
• An increasing rôle of the pressure generation by in-

termittency which cannot be accounted for with standard
RANS approaches.

CONCLUSIONS
Following Kraichnan, Lysak proposed a model to eval-

uate the wall pressure fluctuation spectrum and variance for
pipe flows. This approach was extended here to use it as
a post-processor of RANS computations. A key improve-
ment is the use of Gauss–Laguerre formula which allows
quick and accurate integration.

The model reproduces many nice features of the wall
pressure spectrum such as the f 2 behaviour in the low fre-
quency range, the inertial f−1 region and the viscous cut-
off. The contribution of each part of the boundary layer to
the wall pressure spectrum has been identified.

The extension can be performed whatever the turbu-
lence model used. However, because of too crude modelling
assumptions, attention has to be paid to the way the model
behaves in the transition between the inertial and viscous
parts of the spectrum.

Model validation for cases with adverse pressure gra-
dient evidences some problems. Other data are welcome
to decide whether there is really a problem in the model.
Ways to improve the model to cope with this problem are
proposed.
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