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ABSTRACT
A gain-based low-rank approximation (McKeon &

Sharma, 2010) of the Navier-Stokes equations is utilized to
describe the possibility of geometrically self-similar modes
in the overlap region of wall-bounded turbulent flows. We
establish that a necessary condition for existence of self-
similar velocity fluctuations is the presence of a logarith-
mic turbulent mean velocity. Under the practical assump-
tion that the mean velocity consists of a logarithmic region,
we identify the scalings that constitute hierarchies of self-
similar modes. It is shown that the elements of a hierar-
chy are parameterized by the critical wall-normal location
where the speed of the mode equals the local turbulent mean
velocity: The height and width of the modes scale linearly
and the length of the modes scales quadratically with the
critical wall-normal location.

INTRODUCTION
Wall turbulence is an attractive area of research ow-

ing to its tremendous scientific and technological implica-
tions. It is characterized by a broad range of spatial scales
ranging from large energetic eddies with outer length scales
(e.g. the boundary layer thickness) to small energetic and
dissipative eddies with viscous length scales (i.e. the ratio
between kinematic viscosity and wall shear velocity). The
gap between the outer and viscous eddy scales is bridged by
an overlap region where the size of the energetic eddies is
believed to be proportional to their distance from the wall.
Notwithstanding many important advances in understand-
ing these scalings, a unifying theory of turbulence is still
lacking.

One of the most successful theories that mechanis-
tically describes the turbulent mean velocity and fluc-
tuation intensities relies on the attached-eddy hypothe-
sis (Townsend, 1976). Townsend hypothesized that the
overlap region is occupied by a forest of geometrically
self-similar attached eddies. These eddies are attached in
the sense that their height scales with their distance from
the wall, and they are self-similar since their wall-parallel

Figure 1. Pressure driven channel flow.

length scales are proportional to their height. This model
systematically predicts that if the population density of the
attached eddies inversely decreases with their height, both
the turbulent mean velocity and the wall-parallel energy in-
tensities exhibit logarithmic dependence with the distance
from the wall (Perry & Chong, 1982). These predictions
were recently confirmed using high-Reynolds number ex-
periments (Marusic et al., 2013). However, the attached
eddy hypothesis does not predict the exact shape of the ed-
dies or their evolution in time.

Our objective is to investigate the self-similar modes
in the logarithmic region using the Navier-Stokes equa-
tions (NSE). The geometric similarity of the optimal tran-
sient response to initial perturbations and the optimal re-
sponses to harmonic and stochastic forcings was high-
lighted by Hwang & Cossu (2010) using the linearized NSE
with turbulent eddy viscosity. These authors found that the
streamwise constant optimal responses scale with the span-
wise wavelength in the wall-normal direction for spanwise
wavelengths in the overlap region.

In the present study, we argue that the self-similar
modes are inherent features of the NSE in the presence of a
logarithmic mean velocity. This is done by establishing that
hierarchies of geometrically self-similar velocity fields are
admitted by a rank-1 model (in the wall-normal direction)
based on the principal response modes of the resolvent op-
erator at each wall-parallel wavenumbers and frequencies.
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MODEL OVERVIEW
We provide an overview of a low-rank approxima-

tion to turbulent channel flow following the development
of McKeon & Sharma (2010) for pipe configuration.

Decomposition in the homogeneous direc-
tions

The velocity is decomposed into the Fourier modes in
the homogeneous wall-parallel directions and time

u(x,y,z, t) =
∫∫∫ ∞

−∞
û(y;κx,κz,ω)ei(κxx+κzz−ωt)dκx dκz dω,

(1)

where u(x,y,z, t) = [u v w ]T is the velocity vector, x and z
are the infinitely long streamwise and spanwise directions,
0 ≤ y ≤ 2 is the wall-normal direction (see figure 1 for the
geometry), t is time, ˆ denotes a variable in the trans-
formed domain, κx and κz are the streamwise and span-
wise wavenumbers, and ω is the temporal (angular) fre-
quency. For any (κx,κz,ω) 6= 0, û(y;κx,κz,ω) represents
a propagating wave with streamwise and spanwise wave-
lengths λx = 2π/κx and λz = 2π/κz and streamwise speed
c = ω/κx.

An equation for velocity fluctuations û(y;κx,κz,ω)
around the turbulent mean velocity, U(y) = [U(y) 0 0 ]T =
û(y;0,0,0), is given by

−iωû + (U ·∇)û + (û ·∇)U + ∇ p̂ − (1/Reτ )∆û = f̂,

∇ · û = 0.
(2)

Here, f = [ f1 f2 f3 ]T =−(u ·∇)u is the convective nonlin-
earity in the NSE, p is the pressure, ∇ = [ iκx ∂y iκz ]

T is the
gradient, and ∆ = ∂yy−κ2 with κ2 = κ2

x +κ2
z is the Lapla-

cian. The Reynolds number Reτ = uτ h/ν is defined based
on the channel half-height h, kinematic viscosity ν , and
friction velocity uτ =

√
τw/ρ , where τw is the shear stress

at the wall, and ρ is the density. Velocity is normalized by
uτ , spatial variables by h, time by h/uτ , and pressure by
ρu2

τ . The spatial variables are denoted by + when normal-
ized by the viscous length scale ν/uτ , e.g. y+ = Reτ y. In
the present study, the turbulent mean velocity is an a pri-
ori-known parameter in the model. However, notice that
the velocity fluctuations in the full model sustain the mean
velocity.

Decomposition in the wall-normal direction
The input-output relationship between f̂ and û in (2) is

given by

û(y;κx,κz,ω) = H(κx,κz,ω) f̂(y;κx,κz,ω),

H(κx,κz,ω) = C(κx,κz)R(κx,κz,ω)C†(κx,κz),
(3)

where H(κx,κz,ω) is the transfer function from f̂ to û, cf.
figure 2, the resolvent operator R(κx,κz,ω) is the trans-
fer function for the system with the wall-normal veloc-
ity/vorticity states, the operator C is mapping the wall-
normal velocity/vorticity to û, and C† is the adjoint of C.

Figure 2. For any triplet (κx,κz,ω), the operator
H(κx,κz,ω) maps the forcing f̂ to the response û. The dif-
ferent wavenumbers are coupled via the quadratic relation-
ship between f(x,y,z, t) and u(x,y,z, t). FT and IFT stand
for Fourier transform and inverse Fourier transform, respec-
tively. The input-output map (shown with the dashed rect-
angle) is the main focus of the present study.

These operators are given by

R =

[
R1 0

iκzU ′ R2

]−1

, C =
1

κ2




iκx∂y −iκz
κ2 0

iκz∂y iκx


 ,

C† =

[
−iκx∆−1∂y κ2∆−1 −iκz∆−1∂y

iκz 0 −iκx

]
,

R1 = ∆−1 (iκx ((U− c)∆ −U ′′) − (1/Reτ )∆2) ,
R2 = iκx(U− c) − (1/Reτ )∆,

(4)

where ∆2 = ∂yyyy−2κ2∂yy +κ4, and prime denotes differ-
entiation in y, e.g. U ′(y)= dU/dy. As illustrated in figure 2,
each transfer function represents a linear sub-unit of the full
NSE. In addition, the nonlinear terms wrap a feedback-loop
around the linear sub-units and act as a forcing term that
drives the velocity fluctuations.

A gain-based wall-normal basis is determined using the
Schmidt (singular value) decomposition of H(κx,κz,ω)

û(y;κx,κz,ω) = H(κx,κz,ω) f̂(y;κx,κz,ω) =
∞

∑
j=1

a j(κx,κz,ω)σ j(κx,κz,ω) ψ̂ j(y;κx,κz,ω),

a j(κx,κz,ω) =
∫ 1

−1
φ̂∗j(y;κx,κz,ω) f̂(y;κx,κz,ω)dy,

(5)
where σ1 ≥ σ2 ≥ ·· · > 0 denote the singular values of H,
and the singular functions φ̂ j = [ f̂1 j f̂2 j f̂3 j ]

T and ψ̂ j =

[ û j v̂ j ŵ j ]
T are respectively the forcing and response di-

rections corresponding to σ j and satisfy an orthonormality
constraint

∫ 1

−1
φ̂∗j(y;κx,κz,ω) φ̂ k(y;κx,κz,ω)dy = δ jk,

∫ 1

−1
ψ̂∗j(y;κx,κz,ω) ψ̂k(y;κx,κz,ω)dy = δ jk,

(6)

where δ denotes the Kronecker delta. The computational
approach and the necessary treatments for obtaining unique
singular functions are detailed in Moarref et al. (2013).

The rank-1 approximation
It follows from the singular value decomposition (5)

that if the forcing is aligned in the φ̂ j direction with unit en-
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ergy, the response is aligned in the ψ̂ j direction with energy
σ2

j . Following Moarref et al. (2013), a rank-1 model is ob-
tained by only keeping the principal singular directions in
the wall-normal coordinate for any wall-parallel wavenum-
bers and frequencies. This is motivated by the observation
that the operator H acts as a directional amplifier (see, for
example, McKeon & Sharma, 2010). Several results in wall
turbulence were obtained using the rank-1 approximation,
see e.g. McKeon et al. (2013). To decouple analyses of the
nonlinear forcing and the linear sub-units, we consider an
unstructured forcing in the wall-parallel directions and time.

NECESSARY CONDITIONS FOR EXISTENCE
OF SELF-SIMILAR MODES

The modal decomposition of the velocity field facili-
tates analysis of the contribution of different modes with pa-
rameters (κx,κz,c) to the total velocity. The definitive role
of wave speed c in determining the universal (invariant with
Reynolds number) scales of turbulent channels was empha-
sized in Moarref et al. (2013). In the rest of the paper, the
modes are characterized by c instead of ω and we note that,
for a given κx, prescribing either c or ω yields the other
one. In this section, we determine the necessary conditions
for the presence of geometrically self-similar modes, over
a range of (κx,κz,c), consistent with the dynamics of the
linear sub-units in the NSE described by H(κx,κz,c).

First condition: Logarithmic shape of the
mean velocity

Self-similarity of the principal singular functions of H
relies on scalability of H in the spatial directions. Since
the resolvent operator contains y-dependent coefficients, i.e.
U(y)− c and its wall-normal derivatives U ′(y) and U ′′(y),
cf. (4), scalability of H in y requires scalability of the above
coefficients. This reduces to identifying the necessary con-
ditions under which

U(y)− c = g1(y/yc), (7)

for some functions U(y) and g1(y) and some scale yc to
be determined. Let the relationship between c and yc be
governed by c = g2(yc). Then, we seek the functions U , g1,
g2, and the scale yc such that

U(y) − g2(yc) = g1(y/yc). (8)

It follows from (8) that g2(y) = U(y)− g1(1), g1(y) =
U(y)− g2(1), and g2(1) = U(1)− g1(1). Therefore, (8)
can be rewritten as U(y) −

(
U(yc)−g1(1)

)
= U(y/yc) −(

U(1)− g1(1)
)
, or U(y)−U(yc) = U(y/yc)−U(1). The

only functions that satisfy this constraint are the constant
function and the logarithmic function and we have

U(y) = d1 + d2 logd3
(y), c = U(d4 yc), (9)

where d1 to d4 are constants. The wall-normal scale cor-
responds to the wall-normal location where c = U(d4 yc).
The constant d4 is arbitrary since it enters as a coefficient
in front of the scale yc. We select d4 = 1 such that yc is
the critical wall-normal location corresponding to the wave
speed c.

There is an abundance of numerical and experimental
evidence that support the presence of a logarithmic turbu-
lent mean velocity (see, for a recent summary, Smits et al.,
2011)

U = B + (1/κ) log(y+), yl ≤ y≤ yu. (10)

Here, B is an additive constant, κ is the von Kármán’s con-
stant, and yl and yu are respectively the lower and upper
bounds of the logarithmic region. The constants in (9) are
obtained upon direct comparison with (10).

Second condition: Locality of the singular
functions of H

The boundary conditions in the finite direction y and
the wall-normal symmetry relative to the center plane pose
limitations on wall-normal scaling of the resolvent. These
limitations can be removed if the singular functions have a
zero support near the walls and the center plane. Moarref
et al. (2013) showed that the singular functions correspond-
ing to the energetically significant modes are in fact local-
ized. This was explained by the observation that the peak of
the principal singular functions occurs at or near the critical
wall-normal location where U(y)− c is locally minimized
for a given wave speed (McKeon & Sharma, 2010).

We consider y+l = 100 and yu = 0.1 for the bounds of
the ‘logarithmic’ region to exclude the truly inner and outer
regions of the turbulent mean velocity, and note that recent
experiments suggest that the lower bound on the logarith-
mic region depends on the Reynolds number: y+l ∼ Re1/2

τ ,
see Marusic et al. (2013). Owing to the locality of the sin-
gular functions around the critical layer, the modes with
speeds in the ‘logarithmic’ region, cl ≤ c ≤ cu, are at least
one decade away from the walls and the center plane and the
boundary effects are negligible. Here, cl and cu are given by
cl =U(y+l = 100) = 16, and cu =U(yu = 0.1) =Ucl−6.15,
with Ucl denoting the centerline velocity.

Third condition: Balance between viscous
dissipation and mean advection terms

The scalings in the wall-parallel directions follow
from the balance between the viscous dissipation term,
(1/Reτ )∆, and the mean advection terms, e.g. iκx(U − c),
in the resolvent, cf. R1 and R2 in (4). The self-similarity
requires scaling of the spanwise wavelength with yc and the
streamwise wavelength with y+c yc,

λ̄x = λx/(y+c yc), ȳ = y/yc, λ̄z = λz/yc. (11)

The differential operators in y and the wall-normal
wavenumbers in the yc-scaled coordinates are given by
∂/∂ȳ = yc(∂/∂y), κ̄x = (y+c yc)κx, κ̄z = ycκz. For given
κ̄x and κ̄z, the Laplacian, ∆ = y−2

c (∂ȳȳ − (y+c )
−2(κ̄x)

2 −
(κ̄z)

2), approximately scales with y−2
c if (κ̄z)

2 dominates
(y+c )

−2(κ̄x)
2, i.e.

κz/κx = λx/λz = y+c (λ̄x/λ̄z) & γ. (12)

We consider a conservative value of
√

10 for the thresh-
old γ and note that this value can be modified. This agrees
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Table 1. Summary of the self-similar scalings in the
logarithmic region of the turbulent mean velocity. The
growth/decay rates that these scales induce on the princi-
pal singular value and the principal singular functions of H
are shown. The critical wall-normal location corresponding
to the wave speed is denoted by yc, i.e. c =U(yc).

λx y λz σ1 u1 v1,w1

y+c yc yc yc
(
y+c
)2yc y−1/2

c
(
y+c
)−1y−1/2

c

with the observation of Hwang & Cossu (2010) that the op-
timal responses were approximately similar for κx � κz.
Since the aspect ratio λx/λz increases with y+c , the small-
est value of y+c for which (12) is guaranteed is equal to
y+c1

= γ(λ̄z/λ̄x). Therefore, the smallest wave speed that sat-
isfies the aspect ratio constraint and lies in the logarithmic
region is given by

c1 = max
(
16, B + (1/κ) logy+c1

)
. (13)

Then, the operators R, C, and C† in (4) scale as

R =

[ (
y+c yc

)
R̄1 0

(y+c )
2 R̄3

(
y+c yc

)
R̄2

]
,

C =



(1/y+c )C̄1 (yc)C̄2

C̄3 0
C̄4 (1/Reτ )C̄5


 ,

C† =

[
(1/y+c )C̄†

1 C̄†
3 C̄†

4
(1/yc)C̄†

2 0
(
y+c yc

)−1C̄†
5

]
.

(14)

For given κ̄x and κ̄z that satisfy the constraint (12), the op-
erators C̄1 to C̄5 and their adjoints are approximately inde-
pendent of yc and Reτ . In addition, the operators R̄1 to R̄3
are approximately independent of yc and Reτ when acting
on functions whose supports are localized, cf. the above-
mentioned locality condition. From (14), we have

H =



(
y+c yc

)
H̄11

(
y+c
)2
(yc)H̄12

(
y+c
)2
(yc)H̄13

(yc)H̄21
(
y+c yc

)
H̄22

(
y+c yc

)
H̄23

(yc)H̄31
(
y+c yc

)
H̄32

(
y+c yc

)
H̄33


 , (15)

where the operators H̄i j are effectively independent of yc
and Reτ when acting on their principal singular functions.
Since y+c ≥ y+l = 100, the principal singular value of H
is proportional to (y+c )

2yc. In addition, the orthonormal-
ity constraints (6) on ψ̂1 and φ̂ 1 require that u1 scales with
y−1/2

c . This is because the supports of ψ̂1 and φ̂ 1 expand
with yc. Furthermore, v1 and w1 scale with (y+c )

−1y−1/2
c .

THE SELF-SIMILAR MODES
Upon satisfaction of the above-mentioned conditions,

the principal singular functions of H yield hierarchies of ge-
ometrically self-similar modes that are uniquely parameter-
ized by the critical wall-normal distance yc, i.e. c =U(yc).
As summarized in table 1, the height and width of the self-
similar modes scale with yc and their length with y+c yc.

Any hierarchy is a subset of wave parameters and can be
described by a representative mode with λx,r, λz,r, and
cr =U(ycr ) that belongs the hierarchy.

The isosurfaces of streamwise velocity associated with
three modes that belong to the hierarchy with κx,r = 1,
κz,r = 10, and cr = (2/3)Ucl are shown in figure 3(a). The
larger modes propagate faster and lean more towards the
wall since the length of the modes grows quadratically with
the height. The vertical cross-sections of the streamwise ve-
locity for these three modes at x = 0 and z = 0 are shown
in figures 3(b) and 3(c). As the wave speed increases, the
peaks of the modes move away from the wall, see fig-
ures 3(b) and 3(c). In addition, the modes are attached in
the sense of Townsend since they have energetic legs that
reach down to the wall and their heights scale with y.

The loci of wave parameters that belong to three
demonstrative hierarchies with representative modes
marked by open circles are shown in figure 4(a) for
Reτ = 10000. The mode with κx,r = 1, κz,r = 10, and
cr = (2/3)Ucl (black) was shown to be representative of
the very large-scale motions (McKeon & Sharma, 2010).
The representative modes for the other hierarchies have the
same wavenumbers but different speeds, i.e. cr = 16 (blue)
and Ucl − 6.15 (red), corresponding to the mean velocity
at the lower and upper bounds of the ‘logarithmic’ region.
Each locus constitutes a vertical line after normalizing the
length and width of the modes according to the scales in
table 1 obtained from the resolvent. In fact, the singular
functions of H are self-similar along any vertical line as
long as λx/λz & γ . The aspect ratio constraint requires
that the wave parameters lie above the shaded threshold
plane λx/λz = γ in figure 4(a). For example, the modes
corresponding to the dashed segment of the hierarchy with
cr =Ucl −6.15 do not belong to any hierarchy.

Owing to the self-similarity, the principal singular val-
ues and singular functions of H for all the modes in a given
hierarchy can be determined from its representative mode.
The principal singular value σ1 corresponding to the modes
that belong to the hierarchies in figure 4(a) are shown in
figure 4(b). The singular values grow with (y+c )

2yc as theo-
retically predicted, cf. table 1. Figure 4(c) shows the prin-
cipal streamwise singular function u1 corresponding to the
hierarchy with κx,r = 1, κz,r = 10, and cr = (2/3)Ucl for
100/Reτ ≤ yc ≤ 0.1. The arrow shows the direction of in-
creasing yc. Normalizing and scaling the singular functions
according to table 1 collapses the singular functions for dif-
ferent wave speeds, see black curves in figure 4(d).

Figure 4(d) also shows the scaled singular functions
corresponding to the hierarchies with κx,r = 1, κz,r = 10,
and cr = 16 (blue) and Ucl − 6.15 (red). We see that the
normalized and scaled singular functions lie on the top of
each other for the hierarchy with cr = 16. For the hierarchy
with cr =Ucl−6.15, the singular functions for large yc col-
lapse on each other while the singular functions for small yc
are considerably different. This is expected since the aspect
ratios of the modes fall below γ as yc decreases, i.e. for this
hierarchy, the modes corresponding to small yc lie below
the shaded threshold plane in figure 4(a).

Figures 4(e)-4(j) show similar curves to those in fig-
ure 4(d) for the wall-normal and spanwise velocity compo-
nents. Notice that the self-similarity is weaker for the ve-
locity components that are less localized in the wall-normal
direction. For example, the self-similarity is lost as the bulk
of the spanwise mode moves outside the upper edge of the
logarithmic region for large values of yc.
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(a)

y
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x

(b)

y

z

(c)

y

x

Figure 3. (a) The isosurfaces of the principal stream-
wise velocity corresponding to the modes that belong to
the same hierarchy: (λx,λz,c) = (2.3,0.38,17.35), blue;
(7.2,0.67,18.70), red; and (72.1,2.1,20.05), green. The
dark and light colors show 70 and −70 percent of the max-
imum velocity, respectively. The contours in (b) and (c)
show cross-sections of (a) for x = 0 and z = 0 where thicker
curves correspond to smaller modes. The positive (solid)
and negative (dashed) contours represent±20 and±80 per-
cent of the maximum velocity.

CONCLUDING REMARKS
We illustrate that geometrically self-similar modes are

inherent features of the NSE in the presence of a logarithmic
mean velocity. It was shown that the logarithmic mean ve-
locity, the criticality of singular modes, and the balance be-

tween viscous dissipation and mean advection terms in the
resolvent represent necessary and sufficient conditions for
the linear sub-units in the NSE to admit self-similar modes
whose length and width respectively scale quadratically and
linearly with their height. The wall-normal length scale is
inherited from the turbulent mean velocity, and the wall-
parallel length scales are determined from the balance be-
tween the viscous dissipation term, (1/Reτ )∆, and the mean
advection terms, e.g. iκx(U − c). In addition, since the
nonlinear terms determine the coefficients of the response
modes corresponding to the linear sub-units, we argue that
the above-mentioned conditions are also necessary for self-
similarity in real turbulent flows; determining the sufficient
conditions is a topic of ongoing research.

The identified scalings enable analytical developments
in the overlap (‘logarithmic’) region of the turbulent mean
velocity and result in significant simplifications in analy-
sis of wall turbulence. An outgrowth of our recent ef-
forts (Moarref et al., 2013), the proposed analysis can be
used to effectively bridge the gap between the inner and
outer regions of the streamwise energy density and enable
its scaling to arbitrary large Reynolds numbers. In addition,
the wall-normal locality of the self-similar modes in a given
hierarchy suggests that the linear sub-units in the NSE im-
pose a direct correspondence between wall-parallel scales
and wall-normal locations in the ‘logarithmic’ region. In
the classical cascade analogy, this is reminiscent of an in-
ertial regime studying of which is a topic of ongoing re-
search. Furthermore, the identified scalings are expected to
yield better understanding of the structure and evolution of
the hypothesized attached eddies.
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Figure 4. (a) The vertical lines are the loci of wave parameters that belong to the hierarchies with representative modes (open
circles) κx,r = 1, κz,r = 10, and cr = 16 (blue), (2/3)Ucl (black), and Ucl −6.15 (red) for Reτ = 10000. The shaded threshold
plane corresponds to the wavenumbers with aspect ratio λx/λz =

√
10. The modes below this plane do not belong to any

hierarchy. (b) The principal singular values along the hierarchies in figure 4(a). (c) The principal streamwise singular functions
for the modes that belong to the hierarchy with cr = (2/3)Ucl in figure 4(a). (d)-(j) The normalized and scaled (according
to table 1) principal streamwise, (d), wall-normal, (e)-(g), and spanwise, (h)-(j), singular functions for the modes along the
hierarchies in figure 4(a). The arrows show the direction of increasing yc with 100/Reτ ≤ yc ≤ 0.1.
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