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ABSTRACT
Turbulent Couette-Poiseuille and Couette flows at dif-

ferent mean strain rates, (velocity ratio of Couette wall
to bulk flow, r = 0.6 ∼ 3.15), in a square duct at a bulk
Reynolds number ≈ 10,000 are investigated by large eddy
simulation. Simulations are conducted with 160 × 160 ×
256 grids. Secondary flow near the Couette wall shows
a gradual change of vortex size and position as the mov-
ing wall velocity increased, where the two clockwise rotat-
ing vortices gradually merge in tandem with speed of the
moving wall and form a large clockwise vortex. A linear
relation is observed to exist between the angle of the two
vortices and the parameter r, and the angle saturates be-
yond r ∼2.06. Also, at 0.6 < r < 1.6, together with a small
counter-clockwise corner vortex, this vortex pattern is sim-
ilar to that observed in the corner region of the duct flow
with a free surface. Near the moving wall due to the reduc-
tion of the streamwise velocity fluctuation at the moving
wall, turbulence structure gradually moves towards a rod-
like axi-symmetric turbulence, and as r increases beyond
1.2, turbulence reverts to the disk-like structure.

Introduction
Turbulent flows inside a square duct are of consider-

able engineering interest, such as in heat exchangers or
internal cooling passages of turbine blade (Iacovides &
Launder (1995)). The most studied flow is the turbulent
Poiseuille type inside a square duct (Madabhushi & Vanka
(1991), Gavrilakis (1992), and Huser & Biringen (1993)),
which is characterized by the existence of secondary flow of
Prandtl’s second kind and is not observed in circular ducts
nor in laminar rectangular ducts. The secondary flow is a
mean circulatory motion perpendicular to the streamwise
direction driven by the anisotropy of turbulence.

Although weak in magnitude (only a few percent of the
streamwise bulk velocity), the effects of secondary flow on
the momentum and heat transfer are noticeable (Huser &
Biringen (1993); Iacovides & Launder (1995)). Thus, fac-
tors affecting the secondary flow patterns within turbulent
duct flows were actively pursued, such as, bounding wall
geometry, non-isothermal effect, free surface, system rota-
tion, and Reynolds number (Vazquez & Metais (2002), Pal-
lares & Davidson (2002), Brogolia et al. (2003), Uhlmann
et al. (2007)).The above investigations have implied that
with careful manipulation, the secondary flow can enhance
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momentum transport or heat transfer in different industrial
devices.

However, few studies focused on the effect of the mov-
ing wall on the flow and hence secondary flow structure.
Previous studies on turbulent Couette-Poiseuille flows have
been conducted on simple plane channels and different tur-
bulence statistics and structures between the stationary and
moving wall were identified (Thurlow & Klewicki (2000),
Kuroda et al. (1993), Hwang & Lin (2003)). For Couette-
Poiseuille duct flow, Lo & Lin (2006) found that the sec-
ondary flow structure correlates with the ratio of the speed
of the moving wall and duct bulk flow, albeit the ratio was
less than 1.17.

Thus the present study aims to investigate how the
flow structure within the square duct changes in response
to the increase of the Couette wall velocity. At a fixed bulk
Reynolds number, the flow would migrate from the Couette-
Poiseuille duct flow to a Couette duct flow. Large eddy sim-
ulation is used to compute turbulent Couette-Poiseuille and
Couette flows at different mean strain rates, (velocity ratio
of Couette wall to bulk flow, r = 0.6 ∼ 3.15), in a square
duct at a bulk Reynolds number ≈ 10,000. Issues to be ad-
dressed are: the correlation of the secondary flow and hence
its vorticty transport mechanism to the Couette strain rate,
and the change of the turbulence structures.

Governing Equations and Turbulence Model-
ing

The governing equations for the LES simulation are
obtained by applying the filtering operation. The grid-
filtered, incompressible Navier-Stokes equations assume
the following forms:

∂ρui

∂ t
+

∂ (ρuiu j)

∂x j
= − ∂P

∂xi
+

∂
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∂ui
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i j
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where, τs
i j = ρ(uiu j −uiu j) is the sub-grid stress due to the

effects of velocities being not resolved by the computational
grids and has to be modeled. Here, Ui =< ui > and the
Reynolds stress is < u′

iu
′
j >. In the present study, the dy-

namic model (Germano et al. (1991)) is adopted to model
the sub-grid stress (SGS),

τa = τs
i j −

δi j

3
τs

kk = −2CD∆2|S|Si j (2)
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where δi j is the Kronecker delta, Si j = ∂ui
∂x j

+
∂u j
∂xi

, and, ∆

defined as (∆x∆y∆z)1/3 is the filter width, where the mesh
size is a parameter of the filtering operator. For dynamic
model, the model coefficient CD is allowed to be a function
of space and time. Following Lilly (1992), the coefficient is
obtained using the least square approach.

Numerical Algorithms and Boundary Condi-
tions

A semi-implicit, fractional step method and the finite
volume method are employed to solve the filtered incom-
pressible Navier-Stokes equations (Hsu et al. (2011, 2012)).
Spatial derivatives are approximated using second-order
central difference schemes. The non-linear terms are ad-
vanced with the Adams-Bashfoth scheme in time, whereas
the Crank-Nicholson scheme is adopted for the diffusion
terms. The discretized algebraic equations from momen-
tum equations are solved by the preconditioned Conjugate
Gradient solver. In each time step a Poisson equation is
solved to obtain a divergence free velocity field. Because
the grid spacing is uniform in the streamwise direction, to-
gether with the adoption of the periodic boundary condi-
tions, Fourier transform can be used to reduce the 3-D Pois-
son equation to uncoupled 2-D algebraic equations. The al-
gebraic equations are solved by the direct solver using LU
decomposition.

Flows considered here are fully developed, incom-
pressible turbulent Couette-Poiseuille and Couette flows in-
side a square duct. The computational domain consists of
D × D × 2πD (D is the width of the duct) in the horizontal
(x), vertical (y) and streamwise (z) directions, respectively.
Here, u, v and w are used to denote, respectively, the ve-
locity components in the horizontal, vertical, and stream-
wise directions. The adopted length of the streamwise com-
putational domain (2πD) is based on the earlier DNS and
LES studies of Huser & Biringen (1993) and Madabhushi
& Vanka (1991) and two-point streamwise velocity correla-
tions were used to check its adequacy to capture the longest
structure.

No-slip boundary conditions for the velocity compo-
nents are applied at the four bounding walls and periodic
boundary condition is employed in the steramwise direc-
tion at the inlet and outlet of the square duct. Top wall
(y=D) is either stationary or moving in the positive stream-
wise direction, while other bounding walls are at rest. Grid
(160x160x256) is symmetrically clustered using hyperbolic
tangent functions towards the walls on the cross-plane of the
duct with △x+,△y+ ∼ 0.25−16.77. In the streamwise di-
rection, the grid is uniformly distributed with △z+ ∼ 30.3.
The present results show marginal difference with comple-
mentary LES (192 × 192 × 192) and DNS (192 × 192
× 384) studies on turbulence quantities for duct Poiseuille
and Couette flows. Also, the present SGS contribution to
momentum transport was estimated to be less than 3% of
its resolved stress counterpart. After the flow reached the
statistically stationary state, the simulation was carried out
for another 30 eddy turnover time (D/uτ ) to assemble the
mean flow field and turbulence statistics, which are consis-
tent with the 60 eddy turnover time data. Validations of the
predicted results with DNS data are referred to Fig. 5.
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Figure 3. Angles between twin vortex cores against the
parameter r near the top corners. Solid line: least square line
for r < 2.06; Dash-dot line: least square line for r > 2.06;
N: θ1.

Results
Flows considered are fully developed, incompress-

ible turbulent Couette-Poiseuille flows inside a square duct
where the basic flow parameters are summarized in Table 1,
where case P is the pure Poiseuille flow, cases CP’s are
Couette-Poiseuille flows at different ratios of wall velocity
and pressure gradient and C is pure Couette flow. Also in-
cluded in this table is the turbulent plane Couette-Poiseuille
flow conducted by Kuroda et al. (1993) for comparison pur-
poses. Reynolds number based on the bulk velocity (Rebulk)
is kept around 10,000 for all cases simulated and the impor-
tance of Couette stain rate in this combined flow field can be
indicated by the ratio r = (Ww/WBulk). To maintain the con-
stant bulk Reynolds number, the driving pressure gradient is
modified at each time step by the bulk Reynolds number.

Mean and turbulence fields
Mean streamwise velocity distributions from the top

wall along the wall bisector, i.e. x/D=0.5, at different mean
Couette strain rates are shown in Figure 1 compared with
DNS data of Moser et al. (1999) and Iwamoto et al. (2002).
For cases P-CP1 and CP6-C, the velocity distributions fol-
low closely the 2D channel flow DNS data. However, at
medium Couette velocity, i.e. (CP2-CP5, i.e. r=0.91 ∼ 1.6),
due to the reduction of shear rate, departures from the log-
arithmic distributions are observed. It should be noted that
for all cases considered logarithmic distributions prevail at
the bottom wall, except in the vicinity of the side wall. The
influence of the moving wall also can be observed from the
instantaneous flow structure in Fig. 1 (b), showing cross
sectional view of the longitudinal velocity fluctuations. It
is clear that as the increase of moving wall, the turbulence
structures are gradually suppressed by low mean shear rate.
This damping is most significant as the Couette velocity is
near the bulk velocity, i.e. CP3 case. However, beyond
r > 2.06, the streaky structure is similar to its Poiseuille
duct flow counterpart.

Streamlines of mean secondary flow for cases P to C
are shown in Figure 2. Due to the symmetrical nature of the
flow, only half the domain is shown here for simplicity. The
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Figure 1. (a)Geometry and mean streamwise velocity along the wall-bisector. 2: Moser et al. (1999); ◦: Iwamoto et al.
(2002). (b)Cross-sectional view of longitudinal velocity fluctuation (Y/D=0.98) at different Couetee strain rates r=0.6 (CP1),
1.14 (CP3), 1.6 (CP5), 2.28 (CP7).
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Figure 2. Streamlines of mean secondary flow for cases P to C.

Table 1. The flow conditions for simulated cases; Ww denotes the velocity of the moving wall and WBulk is the bulk
velocity;Reτ = uτ D/ν ,(t=top moving wall, b=bottom stationary wall); Rec = WwD

ν ; r = Ww
WBulk

.

Case Case Case Case Case Case Case Case Case Case Kuroda et al.

P CP1 CP2 CP3 CP4 CP5 CP6 CP7 CP8 C (1993)

Reτt 616 412 333 327 402 498 681 775 970 1225 35

Reτb 616 593 583 579 572 567 551 541 522 553 308

ReBulk 10000 10000 10000 10000 10000 10000 10000 10000 10000 10890 5178

Rec 0 6000 9136 11420 13704 15988 20556 22840 27408 34260 6000

r 0 0.6 0.91 1.14 1.37 1.60 2.06 2.28 2.74 3.15 1.16

vortex structure is clearly visible, where solid and dashed
lines represents counter-clockwise and clockwise rotation,
respectively. The presence of the moving wall does in-
fluence the patterns of the secondary flow, where the two
clockwise rotating vortices gradually merge in tandem with
speed of the moving wall near the Couette wall. Near the

moving wall, the distribution of these secondary structure
consisting of a small and a large vortex is similar to that of
free surface problem observed by Grega et al. (1995); Bro-
golia et al. (2003). However, as the wall velocity further
increases for r > 1.6, the fast moving wall is responsible
for the formation of another smaller clockwise rotating vor-
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Figure 4. Wall stress variation from moving (think line)
and stationary wall (thin line)-cases P to C. Line legend as
for Fig. 1; •: Huser & Biringen (1993).

tex near the top corner. On the other hand, along the bottom
corner bisector the secondary flow is still pointing towards
the corner the same as in turbulent Poiseuille flow. The an-
gle formed by the horizonal x axis and the line joining the
two vortex cores is calculated and plotted against the pa-
rameter r defined by Ww/Wbulk which can be interpreted as
the non-dimensional moving wall velocity. A linear rela-
tion exits between the angle and the parameter r, as shown
in Figure 3. For r > 2.06, the angle saturates and remains at
around 62o.

Local wall stress distributions along the top moving
and bottom stationary walls are shown in Fig. 4. For all
the cases considered in Table 1, the distributions at the sta-
tionary wall follow that the turbulent Poiseuille flow and
have good agreement with DNS data of Huser & Biringen
(1993). On the other hand, wall stresses along the mov-
ing wall show dramatic different profiles, especially near
the top corner. As the mixed wall corner is approached,
due to the high velocity gradient between the fast moving
wall and the nearby slow moving fluid, wall-shear stress of
case CP3 (r = 1.14) reaches a large but finite value with the
maximum value around 110. Also, away from the top cor-
ner, shear stress first decreases in response to reduction of
strain due to the increase of the wall velocity for r < 1.4.
The zero wall stress location, which roughly coincides with
the zero ∂W/∂y region, moves towards the central region
as the wall velocity increases. As the moving wall velocity
increases further, the wall stress increases and distributions
approach their bottom wall counterparts.

Detailed examinations of the turbulence quantities nor-
malized by the stationary wall shear stress can be seen in
Fig. 5, showing the predicted turbulence production, and in-
tensities along the wall bisector at x/D=0.5. Here, the DNS
data of Poiseuille flow (Huser & Biringen (1993)), plane
channel flow (Reτ = 395, Moser et al. (1999), Reτ = 300,
Iwamoto et al. (2002)), and plane Couette-Poiseuille flow
(Reτ = 300, Kuroda et al. (1993)) are also included for com-
parisons. The r value of the plane Couette-Poiseuille flow is
close to 1.14 of CP3 case. In Figs. 5 (a)-(d), the turbulence
production and turbulence intensities distributions from the
duct center towards the bottom wall are similar to those
found in Poiseuille duct flow (Huser & Biringen (1993))

and plane channel flow Moser et al. (1999) and Iwamoto
et al. (2002). Good agreements with DNS data show the
quality of the present predictions. Near the moving wall,
the turbulence level is decreased first in tandem with the in-
crease of moving wall velocity. However, beyond r > 1.2,
due to the high velocity gradient between the fast moving
wall and nearby slow moving fluid, turbulence production
and turbulence intensity gradually increase. This change of
turbulence is in response to the variation of local strain and
hence stress. Also, as shown in Fig. 5(b), the ratio of the
maximum intensity of the moving and stationary walls of
the Couette duct flow is similar to the ratio of the respective
wall shear stresses, which is around 2.3.

Turbulence structure
The invariants of the Reynolds stress tensors are de-

fined as II = −(1/2)bi jbi j , III = (1/3)bi jb jkbki, where
bi j =< u′

iu
′
j > / < u′

ku′
k > −1/3δi j . A cross-plot of −II ver-

sus III forms the anisotropy invariant map (AIM). All real-
izable Reynolds stress invariants must lie within the Lumley
triangle (Lumley (1978)). The region is bounded by three
lines, namely two component state, −II = 3(III + 1/27),
and two axi-symmetric states, III = ±(−II/3)3/2.

AIM of Couette Poisuille and Couette flows at sev-
eral horizontal locations are presented in Figure 6. Here
DNS data of channel flow (Iwamoto et al. (2002)) and
plane Couette-Poiseuille flow (Kuroda et al. (1993)) are
also included for comparison. Near the stationary wall
(y/D ≤ 0.5), turbulence behavior of different Couette-
Poiseuille flows resemble those of the plane Poiseuille
flow. In particular, the turbulence structure is similar to
the plane channel flow, where turbulence approaches two
component state near the stationary wall due to highly sup-
pressed wall-normal velocity fluctuation. It moves toward
the one-component state till y+ ∼ 8 (Antonia et al. (1977),
Vazquez & Metais (2002)) because of the dramatic increase
of streamwise fluctuation in the near wall region and then
follows the positive III axi-symmetric branch (disk-like tur-
bulence, Lee & Reynolds (1985)) towards the isotropic state
at the duct center. Near the moving wall, on the other hand,
due to the reduction of the streamwise velocity fluctuation
at the moving wall, turbulence structure of cases CP1 to
CP4 become a rod-like axi-symmetric turbulence (negative
III) at x/D=0.5. AIM path from plane Couette-Poiseuille by
Kuroda et al. (1993) also shows this behavior, though it is
at a lower Reynolds number. The AIM path at x/D=0.5 also
reveals that the anisotropy level (magnitude of II) near the
moving wall is lower than near the stationary wall. Away
from the middle plane x/D=0.5, turbulence structures grad-
ually restore to boundary layer like profiles and the differ-
ence between AIM path of stationary and moving boundary
layer is lessened. As the wall velocity increases further for
r > 1.2, the rod like structure disappears, and turbulence re-
verts to the disk like structure, as is shown in Fig 6. At other
axial locations, the AIM patterns at the stationary wall are
similar to that at x/D = 0.5, except at x/D=0.015, where the
AIM follows the two-component branch toward one com-
ponent limit. Also, for the Couette duct flow, AIM paths
are similar to the duct Poiseuille flow.

Mean Streamwise Vorticity
The secondary flow structure is closely related to the

mean vorticity Ωz = ∂<v>
∂x − ∂<u>

∂y . Thus, it will be bene-
ficial to examine the vorticity transport equation (Brogolia
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Figure 5. Turbulence production, kinetic energy and intensities along the wall bisector for cases P to C. Legend for lines see
figure 1; △ symbol: Huser & Biringen (1993); • symbol: Kuroda et al. (1993); 2 symbol: Moser et al. (1999); ◦ symbol:
Iwamoto et al. (2002).

et al. (2003)), and is shown as follows.

U+ Ω+
z

∂x+
+V + ∂Ω+

z
∂y+

︸ ︷︷ ︸
Convection

=
1

ReBulk
(

∂ 2Ω+
z
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z
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Viscous di f f usion

+(
∂ 2
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Shear stress productionn

+
∂ 2

∂ x+∂y+
(< u′+2 > − < v+2 >)

︸ ︷︷ ︸
normal stress production

+(
∂ 2

∂x+2 − ∂ 2

∂y+2 ) < τ+
xy > − ∂ 2

∂x+∂y+
(< τ+

xx > − < τ+
yy >)

︸ ︷︷ ︸
unresolved SGS production

(3)
which represents balances among convection, viscous
diffusion and resolved and unresolved shear stress and
anisotropy of normal stress productions. The unresolved
SGS production of vorticity is marginal, which is less than
1% of the resolved ones.

Influences of the Couette velocity on the relative im-
portance of transport terms in Eq. 3 can be referred to
Fig. 7, where the filled and open symbols represent trans-
port contributions at the maximum normal stress produc-
tion along vertical cross sections across the centers of the
counter-clockwise (inner) and clockwise (outer) vortices,
respectively, at the top wall, as shown in Fig. 2.

For the inner corner vortex shown in Fig. 7, the gen-
eration of vorticity is dominated by the normal stress trans-
port (r ≤ 1.6) and viscous diffusion (r ≥ 1.6). The shear
stress production is observed to decay in tandem with the
increase of the Couette velocity for (r ≤ 1.6). This indicates
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Figure 6. Anisotropy invariant map for cases P to C at dif-
ferent locations. Legend for lines see figure 1; •: Kuroda
et al. (1993); ◦: Iwamoto et al. (2002).

the gradual transition from the Poiseuille flow type (Madab-
hushi & Vanka (1991); Huser & Biringen (1993)) to the free
surface flow type (Brogolia et al. (2003)). Beyond r > 1.6,
shear stress contribution increases and exceeds that of the
normal stress production, which is due to the emergence
of another smaller vortex at the top corner. For the outer
vortex, normal stress production is balanced by shear stress
production and viscous diffusion, though the viscous diffu-
sion becomes dominant at larger Couette velocity (r > 2).

Conclusions
Turbulent Couette-Poiseuille and Couette flows at dif-

ferent mean strain rates, (velocity ratio of Couette wall
to bulk flow, r = 0.6 ∼ 3.15), in a square duct at a bulk
Reynolds number ≈ 10,000 are investigated by large eddy
simulation. Simulations are conducted with 160 × 160 ×
256 grids. The present SGS contribution to momentum
transport was estimated to be less than 3% compared to its
resolved stress counterpart and the unresolved SGS produc-
tion of vorticity is less than 1% of the resolved ones.

Influences of the top moving wall on the flow and tur-
bulence structure near the stationary bottom wall are not
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significant, which remain similar to their Poiseuille duct
flow counterpart. The major changes reside in the region
close to the Couette wall. In the cross sectional view of sec-
ondary flow, the two clockwise rotating vortices gradually
merge in tandem with speed of the moving wall and form a
large clockwise vortex. Also, together with a small counter-
clockwise corner vortex, this vortex pattern is similar that
observed in the corner region of the duct flow with free sur-
face. Beyond r > 1.6, slight deviation from the free surface
vortex pattern is observed due to the formation of another
smaller clockwise rotating vortex near the top corner. This
change of vortex structure is also reflected in the dominant
terms of the vorticity transport equation. A linear relation
is observed to exist between the angle of the vortices and
the parameter r. As the ratio of moving velocity continually
elevates toward r > 2.06, the change of angle saturates.

Different Couette wall strain rates also exert substan-
tial influence on the turbulence structure. With regard to
the turbulence kinetic energy, the turbulence intensities are
first damped near the moving wall, which is caused by the
reduced strain rate ∂W

∂y in the corresponding region. Due
to the reduction of the streamwise velocity fluctuation at
the moving wall, turbulence structure gradually moves to-
wards a rod-like axi-symmetric turbulence as r increases.
As the wall velocity increases further for r > 1.2, the rod
like structure disappears, and turbulence reverts to the disk
like structure.
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