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Laboratoire de Mécanique de Lille

CNRS UMR 8107, Université Lille Nord de France
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ABSTRACT
Recent studies by Marusic et al. (2010) and Mathis

et al. (2013) suggest the existence of a fundamental wall-
shear-stress in any wall-bounded turbulent flow. It can be
interpreted as a background turbulent wall-shear-stress free
of Reynolds number effects. To investigate its universal as-
pect, here we report a statistical/spectral comparison of this
fundamental wall-shear-stress in three different configura-
tions: boundary layer, pipe, and channel flows. A model
is proposed to generate a synthetic fundamental fluctuating
wall-shear-stress surface, which can then be used to predict
the 2D wall-shear-stress at any Reynolds number thanks to
an inner-outer scale interaction model.

INTRODUCTION
In the past decade, the increase of the Reynolds num-

ber in numerical simulations and experiments of turbulent
wall-bounded flows has considerably improved the knowl-
edge and understanding of the fluctuating velocity field. It
is now well accepted (Hutchins and Marusic, 2007a) that
two main energetic ranges of scales exist within such wall-
bounded flows. Indeed, as depicted in Figure 1, two distinct
peaks are identified in the streamwise premultiplied energy
spectrogram: an inner peak occurring near the wall, around
y+ ≈ 15, and an outer peak appearing in the logarithmic
region (y+ml ≈

√
15Reτ ) which becomes more prominent

as the Reynolds number increases (Hutchins and Marusic,
2007a; Kim and Adrian, 1999; Tomkins and Adrian, 2003;
amongst others).

Note the notations used in this paper: y denotes the
wall-normal direction, u the streamwise velocity, Reτ the
friction Reynolds number based on the boundary layer
thickness δ and the friction velocity uτ =

√
τ/ρ , τ is the

mean streamwise component of the wall-shear-stress (the
spanwise component is not considered in this paper), prime
denotes a fluctuating quantity (i.e. whose mean value was
substracted), and “+” superscript a quantity scaled in wall
units.

Many authors have considered the possible coupling
between the prominent scales, and their interaction ap-

Figure 1. Streamwise premultiplied energy spectrogram
of streamwise velocity fluctuation in a turbulent boundary
layer. Measurements by Kulandaivelu (2012).

pears to be well described by a superposition mechanism
(Hutchins and Marusic, 2007a; Abe et al., 2004), and an
amplitude modulation effect (Hutchins and Marusic, 2007b;
Bandyopadhyay and Hussain, 1984; Mathis et al., 2009).
Following these observations, Marusic et al. (2010) and
Mathis et al. (2011) proposed a conceptual approach em-
bedding the superposition/modulation mechanisms into an
inner-outer scale interaction (IOSI) model. Given the large
scale part of the fluctuating velocity field at the middle of
the logarithmic layer, this model is notably able to predict
the high-order statistics and the spectral content of the fluc-
tuating velocity in the vicinity of the wall (0 ≤ y+ ≤ 100,
say). Recently, Mathis et al. (2013) extended the model
to the fluctuating component of the streamwise wall-shear-
stress, τ ′. It is formulated as follows:

τ ′+ = τ ′∗
[
1+α ũ′+θL

]
+α ũ′+θL

, (1)

where ũ′+θL
is the large scale fluctuating velocity taken

at the middle of the log-layer (cutoff wavelength set to
λ+

x,cutoff = 7000) and shifted in the streamwise direction
in order to respect the large-scale structure angle θL
(Mathis et al., 2013), α is the superposition/modulation
coefficient, and τ ′∗ the so-called fundamental fluctuating
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wall-shear-stress, which can be interpreted as an inner-
scaled shear-stress neither affected by the superposition
effect, nor by the amplitude modulation effect. In their
paper, Mathis et al. (2013) made use of the direct numerical
simulation of channel flow by del Álamo et al. (2004)
(Reτ = 934) in order to extract τ ′∗, and demonstrated the
efficacy of the IOSI model over a wide range of Reynolds
numbers.

In the following, we analyse direct numerical simula-
tions of boundary layer, channel, and pipe flows in order to
verify the universal aspect of the fundamental wall-shear-
stress and to investigate its statistical properties and 1D/2D
spectral content. We also present a model to generate a
synthetic surface of fundamental wall-shear-stress fluctua-
tions respecting both the fundamental probability density
function (PDF) and its 1D/2D energy spectra.

BOUNDARY LAYER, PIPE AND CHANNEL
FLOWS

The difference between boundary layer, pipe and
channel flows is investigated thanks to a numerical
database whose Reynolds number remains relatively con-
stant: Schlatter et al. (2009) for boundary layer (Reτ =
1250), Chin et al. (2010) for pipe (Reτ = 1000), and del
Álamo et al. (2004) for channel (Reτ = 934) flows.
For the three configurations, the fundamental wall-shear-
stress, τ ′∗, is first extracted using the procedure proposed by
Mathis et al. (2013), i.e. the cutoff wavelength separating
the inner and outer peaks is set to λ+

x,cutoff = 7000 and taken
at the middle of the log-layer, y+ ≈ √15Reτ . Note also
that the superposition/modulation coefficient has been set to
α = 0.1 in all cases, as found by Mathis et al. (2013). The
first results shown in Figures 2 and 3 support the universal
aspect of τ ′∗ regarding both its probability density function
and streamwise 1D energy spectrum. To further highlight
the similarities between the three flows, the standard devi-
ation, skewness, and kurtosis are also presented in Table 1.
Interestingly, the probability density function has the fea-
tures previously reported in the literature at low Reynolds
numbers (Alfredsson et al., 1988; Örlü and Schlatter, 2011),
which supports the idea that τ ′∗ can be seen as a fundamen-
tal turbulent wall-shear-stress, free of the large scale effects
appearing at high Reynolds numbers.

Table 1. Standard deviation, skewness and kurtosis of the
fundamental wall-shear-stress.

Configuration τ ′∗rms Sk(τ ′∗) Ku(τ ′∗)

Boundary Layer 0.41 1.02 5.1

Channel 0.40 1.07 5.1

Pipe 0.40 0.99 5.0

pdf model, eq. (2) 0.40 1.01 4.77

1D spectra model, eq. (3) 0.40 n/a n/a

2D spectra model, eq. (4) 0.40 n/a n/a
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Figure 2. Probability density function of the fundamen-
tal wall-shear-stress in channel (Reτ = 934), pipe (Reτ =

1000), and boundary layer (Reτ = 1250) flows compared to
the model equation (2).
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Figure 3. Streamwise premultiplied 1D energy spectrum
of the fundamental wall-shear-stress in channel (Reτ =

934), pipe (Reτ = 1000), and boundary layer (Reτ = 1250)
flows compared to the model equation (3).

Based on these strong similarities, we postulate the
idea of manufacturing two model functions for both the
probability density function and the premultiplied energy
spectrum. Due to their respective shape (which reaches zero
at the extremities and stays positive in the middle), we pro-
pose to model these functions using a least-squares optimi-
sation of the coefficients of multiple superposed Gaussian-
type functions as formulated in equations (2) and (3).
We respectively need nine and four superposed Gaussian-
functions to reach a good level of accuracy (relative inte-
gral error below 1%) and notably capture the tails of the
PDF as depicted in Figure 2. The final optimised param-
eters retained are summarised in Tables 2 and 3, and the
corresponding three first order moments are reported in Ta-
ble 1. It must be noted at this stage that the integration of the
energy spectrum model Eq. (3) gives the same variance as
the one contained in the probability density function Eq. (2)
with a three-digits round-off precision. This is a cornerstone
of the model proposed here since this is the only common
property shared by both the probability density function and
energy spectrum.

pdf(τ ′∗) =
9

∑
i=1

Ai e
−(τ ′∗−ai)

2

2α2
i (2)

kxφτ ′∗τ ′∗ =
4

∑
i=1

Bi e
− ln2 λ+x

bi
2β2

i (3)
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Table 2. Coefficients of the PDF model equation (2).

i Ai ai αi

1 4.434×10−1 −0.157 0.187

2 4.391×10−1 −0.331 0.143

3 3.471×10−1 0.045 0.249

4 2.660×10−1 0.201 0.361

5 2.184×10−1 −0.463 0.110

6 7.254×10−2 0.437 0.490

7 1.548×10−2 0.568 0.709

8 3.871×10−3 −0.766 0.066

9 1.749×10−8 −0.507 1.679

Table 3. Coefficients of the premultiplied energy spectrum
model equation (3).

i Bi bi βi

1 4.613×10−2 811 1.104

2 7.527×10−3 5452 1.477

3 6.668×10−3 4543 0.408

4 2.250×10−3 452 0.341

A SYNTHETIC FUNDAMENTAL WALL-
SHEAR-STRESS

Thanks to these two model functions, Eq. (2) and
Eq. (3), we can make use of an Iterative Amplitude Ad-
justed Fourier Transform (IAAFT) algorithm (Schreiber
and Schmitz, 2000) in order to generate a synthetic fun-
damental wall-shear-stress that respects both the required
spectral content and the probability density function. The
algorithm is composed of the following steps:

Ê generate a random series satisfying the PDF Eq. (2);
Ë compute the Fourier transform of this series;
Ì replace the amplitude of the Fourier coefficients with
the ones satisfying the energy spectra Eq. (3) (the phase
being unchanged);
Í compute the inverse Fourier transform;
Î replace the maximum value of the new signal Ã by
the maximum value of the random series initially gen-
erated at step À, do the same for the second maximum
value, and so on until the minimum value is replaced;
Ï repeat steps Á to Ä until convergence.

Note that after step Ã, the target energy spectra is perfectly
satisfied whereas the PDF is not converged. The opposite
happens after step Å where the target PDF is perfectly sat-
isfied. Hence, the actual quantity converging during the iter-
ative procedure is the spectral density, and its convergence
is obviously better satisfied if the model functions, Eq. (2)
and Eq. (3), share the same variance, which is the case here.
In practice, this algorithm converges quickly, 15 iterations
being generally sufficient to generate a synthetic 1D signal
of fundamental wall-shear-stress.

To assess the quality and usefulness of this surrogate
signal, we propose to inject it into the IOSI model Eq. (1)
and to verify that it does not deteriorate the model pre-
dictions obtained with a fundamental signal originally ex-
tracted from the channel flow DNS (results noted “origi-
nal” hereafter). Figure 4 depicts the wall-shear-stress stan-
dard deviation predicted over the range of Reynolds num-
bers experimentally studied by Kulandaivelu (2012). The
predictions involving the synthetic signal match the orig-
inal predictions with a very good level of accuracy, and
the Reynolds number trend observed by Schlatter & Örlü
(2010) is preserved. We also present in Figure 5 the PDF
and 1D premultiplied energy spectrum predicted thanks to
an input large scale streamwise velocity taken from a tur-
bulent boundary layer experiment at Reτ = 13320. Even
if the reference data does not exist because of the diffi-
culty to measure velocity fluctuations very close to the wall
with hot-wire anemometry (Hutchins et al., 2009), we can
still notice that the prediction involving the synthetic sig-
nal stays in fairly good agreement. This level of agreement
is also found for the other Reynolds numbers investigated
(2740≤ Reτ ≤ 22884, not shown here), which supports the
quality of the synthetic fundamental wall-shear-stress.
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Figure 4. Standard deviation of the wall-shear-stress pre-
dicted by Eq. (1) with the original fundamental signal and
the synthetic one. The Schlatter & Örlü (2010) function is
also plotted as a reference.
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Figure 5. PDF (top) and 1D premultiplied energy spec-
trum (bottom) predicted by the IOSI model Eq. (1). Input
large scale velocity taken from a turbulent boundary layer
experiment at Reτ = 13320 by Kulandaivelu (2012).
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2D FUNDAMENTAL WALL-SHEAR-STRESS
So far, the model functions, Eq. (2) and Eq. (3), cou-

pled with the IAAFT algorithm allow us to generate a
synthetic fundamental signal. Because this signal is one-
dimensional, it can be useful for hot-wire measurements.
However, if one wants to use the IOSI model Eq. (1) with a
numerical simulation (a large-eddy simulation for instance),
it is necessary to extend the study to the spanwise direction.
We recall that the spanwise component is not considered in
this study.

To this end, we present in Figure 6 the spanwise spec-
trogram of the streamwise fluctuating velocity in a turbu-
lent boundary layer simulation by Schlatter et al. (2009)
at Reτ = 1250. Altough the Reynolds number is mod-
erate, it is high enough to observe the emergence of the
outer peak (this peak is not fully formed in the channel
flow at Reτ = 934). This is an interesting result as an outer
peak cannot be observed on the streamwise spectrogram for
such a Reynolds number (the outer peak tends to emerge
around Reτ ≈ 5000 on the streamwise spectrogram). As
for the streamwise spectrogram, the inner peak is located
at y+ ≈ 15, and its characteristic spanwise wavelength is
λ+

z ≈ 120 which corresponds to the near-wall streaks span-
wise spacing. The outer peak is located in the middle of the
logarithmic region y+ml ≈

√
15Reτ , as is also the case with

the streamwise spectrogram.
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Figure 6. Spanwise premultiplied energy spectrogram of
the streamwise velocity fluctuation in a turbulent boundary
layer. Simulation by Schlatter et al. (2009).

This observation allows us to extend the concept of the
IOSI model developed by Marusic et al. (2010) and Mathis
et al. (2011) in the spanwise direction. The main concept
of the IOSI model is to isolate the Reynolds number effects
(related to the outer peak) from the fundamental small scale
turbulence (associated with the near-wall cycle and the in-
ner peak). For the streamwise direction, the cutoff wave-
length was set to λ+

x,cutoff = 7000 by Mathis et al. (2011).
Here, the spanwise spectrogram suggests a spanwise cutoff
wavelength of λ+

z,cutoff = 500 to isolate the two peaks.
Hence, we can consider again the channel simulation

by del Álamo et al. (2004) and use these characteristic cut-
off wavelengths to spectrally filter (sharp cutoff filter) the
simulation. This 2D filtering gives access to the large scale

streamwise velocity fluctuation, ũ′+θL
, which can be used to

extract the 2D fundamental wall-shear-stress by inverting
Eq. (1). Note that the value of α and θL are unchanged
to do so because the spanwise filtering should not change
the structure angle nor the superposition/modulation coef-
ficient if the spanwise cutoff only filters the inner peak. In
addition, we use only the channel simulation at this stage as
it is the one for which we have the most instantaneous fields

available. Indeed, with 15 instantaneous fields and making
use of both the top and bottom walls of the channel, one
can extract 30 independent fundamental wall-shear-stress
planes. It ensures a good convergence of the probability
density function and energy spectra.

As expected the 2D filtering procedure did not drasti-
cally change the probability density function compared to
that obtained with the 1D procedure. The new PDF is not
shown here but its first order moments (standard deviation,
skewness and kurtosis) respect the ones of the model func-
tion, Eq. (2). This indicates that the spanwise cutoff has
been well chosen to isolate the inner and outer peaks.

The 2D energy spectrum of the fundamental wall-
shear-stress is shown in Figure 7. To propose a model func-
tion of this 2D energy spectrum, we now decide to opti-
mise the parameters of multiple superposed 2D Gaussian-
functions expressed as follows:

kxkzφτ ′∗τ ′∗ =
7

∑
i=1

Ci e
−A ln2 λ+x

Λx,i
−B ln λ+x

Λx,i
ln λ+z

Λz,i
−C ln2 λ+z

Λz,i , (4)

where,

A =
cos2 Θi

2γ2
x,i

+
sin2 Θi

2γ2
z,i

, (5)

B =
sin2Θi

2γ2
z,i
− sin2Θi

2γ2
x,i

, (6)

C =
sin2 Θi

2γ2
x,i

+
cos2 Θi

2γ2
z,i

. (7)

The use of seven Gaussian-functions and a least-squares op-
timisation is sufficient to find the set of optimised parame-
ters presented in Table 4. Hence, the model function pro-
posed, Eq. (4-7), gives very good agreement as depicted in
Figure 7. Furthermore, when the model function is inte-
grated over the streamwise/spanwise wavelengths, it also
preserves the desired standard deviation as shown in Ta-
ble 1.
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Figure 7. 2D premultiplied energy spectrum of the fun-
damental wall-shear-stress extracted from the channel flow
simulation by del Álamo et al. (2004) at Reτ = 934. The
model function, Eq. (4-7), is also plotted. Levels are from
4×10−3 to 3.2×10−2 every 4×10−3.
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Table 4. Coefficients of the 2D energy spectrum model function, Eq. (4-7).

i Ci Λx,i Λz,i γx,i γz,i Θi

1 1.750×10−2 533 81 0.774 0.383 −29.796

2 1.491×10−2 1332 107 1.117 0.500 −4.909

3 5.869×10−3 1159 214 0.679 1.227 +83.624

4 2.687×10−3 2597 337 1.449 0.443 −62.109

5 2.560×10−3 7510 359 0.635 1.427 −37.558

6 1.848×10−3 435 540 1.194 0.987 +77.216

7 1.828×10−3 135 217 0.741 0.392 −66.827

2D WALL-SHEAR-STRESS PREDICTIONS
Finally, the IAAFT algorithm presented above is en-

riched by the use of the 2D energy spectrum model function,
Eq. (4-7), instead of using the 1D energy spectrum model.
This allows us to generate a synthetic plane of streamwise
fluctuating fundamental wall-shear-stress which can then be
used in the IOSI model, Eq. (1). Figure 8 shows a zoom of
the instantaneous wall-shear-stress fluctuations taken in the
DNS of del Álamo et al. (2004), compared to a prediction
involving the fundamental wall-shear-stress extracted from
the same DNS (but at a different time), and a prediction
involving the 2D synthetic fundamental wall-shear-stress.
The overall agreement is very good, notably for the high-
shear macroscopic regions which are located at the same
locations.
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Figure 8. Instantaneous wall-shear-stress at Reτ = 934 for
a channel flow. Black and white regions corresponds to
high and low shear-stresses, respectively. Simulation by del
Álamo et al. (2004) (top), IOSI prediction using a funda-
mental signal extracted from the DNS (middle), and IOSI
prediction using a fundamental 2D synthetic surface (bot-
tom).

It must be emphasised that even if the prediction in-
volving the synthetic field appears accurate, it still seems
that the wall-shear-stress is less organised giving a “blurry”
aspect to the prediction. This is due to the fact that noth-
ing is done to model the phase of the fundamental wall-
shear-stress. Indeed, when the IAAFT algorithm is applied,
at step Ì, the phase is simply preserved from the previous
step. This means that the algorithm naturally reorganises
the random phase initially imposed at step Ê, sufficiently
to recover the first order moments, but not in a fashion able
to reproduce an equivalent coherent aspect. However, as
shown in Figure 9, this apparent lack of organisation is not
visible on spatial streamwise/spanwise auto-correlations at-
testing the good level of fidelity of the prediction involving
the synthetic model proposed in this paper.
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Figure 9. Normalised auto-correlations of the predicted
fluctuating wall-shear-stress in streamwise direction (top)
and spanwise direction (bottom).
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CONCLUSION
This paper discusses the existence of the so-called

fundamental wall-shear-stress, investigating a numerical
database of turbulent boundary layer, pipe, and channel
flows. The fundamental wall-shear-stress extracted from
these three flows are found to be very close to each other,
thus supporting the notion that a universal signal can be
used. Based on these observations, model functions are
formulated to represent its probability density function and
its 1D/2D energy spectra. Coupled with an iterative am-
plitude adjusted Fourier transform algorithm, these model
functions allow us to generate synthetic 1D signals, and 2D
surfaces of fundamental wall-shear-stress.

The resulting synthetic signal can then be used with
the inner-outer scale interaction model to predict instanta-
neous wall-shear-stress planes, where the only input is a 2D
large scale streamwise velocity field taken in the middle of
the logarithmic region. In this paper we make use of a fil-
tered direct numerical simulation to provide this large scale
field, but large-eddy simulations, or spanwise distributed
hot-wire measurements could have also been used to recon-
struct an instantaneous prediction of the wall-shear-stress at
any Reynolds number.

While the predictions could be enhanced by taking
into account the information contained in the fundamental
wall-shear-stress phase, the procedure developed in this pa-
per can still be used as a wall-model able to capture the
Reynolds number dependency of both the high-order mo-
ments and spatial 2-point correlations of the wall-shear-
stress.
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