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ABSTRACT 

Asymptotic expansions for the  profiles of 
fluctuating vorticity in boundary layers are proposed 
based on DNS data. The inner region requires two 

terms with different scalings; 
  
< !

i
!

i
> /(U

0
u
"

3 / # 2
)  

and 
  
< !

i
!

i
> /(u

"

4 / # 2
) . The first term decays 

exponentially and needs no matching term in the outer 
region.  The second term has an overlap behavior of  ~ 
C / y+ .  To match the outer region this requires a third 
scaling for the outer expansion 
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the Kolmogorov time scale.   
 

INTRODUCTION 
From a mathematical viewpoint the theory of 

turbulent wall layers is a singular perturbation 
problem for large Reynolds numbers.  Profiles are 
expressed as matched asymptotic expansions.  There 
are three parts; an expansion for the outer region, an 
expansion for the inner region, and a common part 
that matches the two.  

 The velocity profile is a well-known example.  
For the outer region the profile has an expansion 
consisting of two terms.  
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The gauge function uτ / U0 approaches zero as Reτ 
becomes large according to   
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It also changes the scaling of the F(Y)  term in (1) 
compared to the leading term.  

The inner region profile has only the second term 
in the series. 
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The limiting behavior, the common part, is the log 
law. 
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These common parts were found by Izakson(1937) 
and Millikan(1938) by requiring that equations (1) 
and (3) match in an overlap region.  This was a 
significant change in viewpoint as it renders moot the 
quasi-physical assumptions and arguments previously 
used to derive log laws.   

A uniformly valid profile is represented as a 
composite expansion.  An additive composite 
expansion is the sum of the inner and outer 
expansions minus the common part.  For example, 
consider the Reynolds shear stress has the composite 
expansion; 
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Here the inner Reynolds shear stress function is g(y+) 
and the outer is G(Y).  The common part is found to 
be 
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Equation 5 contains a Reynolds number effect 
because Y =y+/Reτ. 
     Figures 1 displays the Reynolds stress 

 ! < uv >
+ from the DNS of Schlatter et al. (2010) in 

outer variables.  The Reynolds number effects in Fig. 
1 are evident. The solid black line is an estiment for 
G(Y).  The inner stress function g(y+)  is plotted in 
Fig. 2.  This was produced by solving Eq. 5 for g(y+), 
substituting data for <uv>+, and  the  estimate for 
G(Y) from Fig.1. A reasonably good correlation is 
obtained.   The DNS data and the prediction of Eq 5  
for  ! < uv >

+ are displayed on Fig. 3.  The prediction 
matches well except in the outer region at the lowest 
Reynolds , Reτ =25 0  . 
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Vortical and Irrotational Fluctuations 

It has been observed that a turbulent boundary 
layer has regions of vortical fluid and regions where 
the flow is an irrotational potential flow.  
Experimental measurements show fluctuations are 
intermittent between irrotational and vortical out to 
y/δ  ~ 1.2.  DNS results yield an rms vorticity 
fluctuation decrease by a factor of 100 at about y/δ  ~ 
1.5 .  Potential fluctuations extend somewhat further 
out.  The streamwise velocity rms decreases by a 
factor of 100 at about y/δ  ~ 2.0 

By the Helmholtz decomposition and Biot-Savart 
law one can propose that everywhere the velocity 
fluctuations can be decomposed  into  potential and 
vortical parts. 
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The potential component is caused by singularities 
within the boundary.  Also note that the integral 
produces potential motions in regions away from 
where the vorticity exists.  The intimate connection 
between velocity and vorticity is explicit in Eq. 7. 

Corrsin and Kistler(1954) derived (see Pope 
(2000)) a significant relation regarding fluctuating 
irrotational motions.  Let the kinetic energy 

be
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for irrotational  fluctuations is equal to the gradient of 
the kinetic energy. 
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   The Reynolds stress of irrotational fluctuations is 
equivalent to a pressure and has no effect on the mean 
velocity profile.  

Townsend(1972) in his second book defined 
active motions as those that make an essential 
contribution to the Reynolds shear stress. Thus, 
potential motions are inactive.  However, there may 
also be vortical motions that are inactive as defined by 
Townsend.  Active and inactive are useful catagories, 
but are not rigorously defined. 
  
Different Velocity Scales 

 The Reynolds shear stress <uv> scales when 
normalized with the friction velocity.  However, there 
is much evidence (for instance Degraaff and Eaton 
(2000)) that some fluctuations, such as the streamwise 
velocity <uu>, scale with the mixed velocity 
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.  Perhaps the first use of this scale was 

Alfredsson and Johansson(1984). 
It has also been found that the fluctuating wall 

shear stress, which is directly related to the fluctuating 
wall vorticity does not scale on the friction velocity. 

Because uτ and U0 separate as the Reynolds 
number increases, quantities that scale differently will 
also sepaerate.  The ratio uτ/U0(Reτ)  as a gauge 
function changes the scaling of the terms.  An 
asymptotic expansion of the quantity will have two 
terms to account for the different scaling behavior. 

The free stream velocity does not usually appear 
in inner region quantities, however, the outer region 
potential motions can be imposed at the wall through 
pressure fluctuations. 

 
Data Sources 

 The first DNS boundary layer analysis was 
Spalart (1988).  Data for the present analysis comes 
from DNS calculations of Jiménez et al. (2010) and 
Schlatter et. al. (2011).  Channel flow DNS data 
comes from Kim et al. (1987), from Jiménez and 
coworkers (2003, 2004, 2006, 2008)), and Morishita 
et al. (2011).  DNS data has good internal 
consistency,.  However, Schlatter and Orlu (2010), 
especially for boundary layers, note differences 
between different calculations and urge caution. 
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INNER REGION 

Consider that the <uv> and <vv> correlations 
scale with uτ , however, the <uu> correlation scales 

approximately with 
  

u
!
U

0
.  The streamwise velocity 

u has two types of activity; active and inactive.   An 
asymptotic expansion for  <uu> needs two terms in 
order to account for the different scaling.  

The central point of this paper is that an adequate  
representation of vorticity fluctuations in the inner 
region also requires an asymptotic expansion of two 
terms. This form is (using i as a general index without 
implying a sum): 
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The Reynolds number relation for the gauge function 
was alteady given in Eq. 2. It is convenient to define 
some symbols for the nondimensional forms.  Number 
subscripts, 0 and 1, indicate the term order in the 
expansion, while the superscript + is friction velocity 
 scaling and # is mixed scaling.  
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Regarding the vorticity dimensions as a 
velocity/length we interpret the length as the viscous 
length ν/uτ and the velocity as either uτ or (uτ U0 )1/2. 
     Using the nomenclature of Eq. 10, Eq. 9 becomes. 
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Since the zero-term in Eq. 11 scales with mixed 
variables, and the Reynolds shear stress scales only 
with the friction velocity, it is reasonable to assert that 
they are the result of different physical processes and 
the zero-term is inactive.  On the other hand the one-
term scales on the friction velocity and contains the 
Reynolds stress motions. Thus, it is active in 
Townsend’s terminology, but could also contain 
inactive motions .   

The activities causing the two terms in Eq. 11 are 
not necessarily independent.  In closed form problems 
it is typical for the first term to appear in the equations 
governing the second term.  Another effect is that 
competition between two terms changes the shape the 
results.  For instance,  peaks in the curves can shift in 
value and location with Reynolds number.  An 
example is the shear stress peak in Fig. 3. 

 
A special case, of Eq. 11 is the vertical vorticity 

<ωyωy> where the zero-term is absent.  Figure 4 
displays the profiles of <ωyωy>

+ with Reynolds 
number as a parameter. One can see that for  
Reτ =  970  and above, the correlation is excellent.  
Also plotted on this figure is the correlation obtained 
for channel flow  in Panton (2009).  The closeness of 
the data and the channel flow curve confirms that 
active motions in channels and boundary layers inner 
regions are the same. 

However, correlations for the other two 
components when scaled with 

  
u
!

4
/ "

2 ( <ωxωx>
+ and  

<ωzωz>
+ ) are not good.  Figure 5 shows <ωxωx>

+ .  
At the wall there is a large value that falls off rapidly 
to y+ =1 and then rises again to another maximum 
around y+ =20.  The solid black curve is the 
correlation curve for <ωxωx>1

+ determined for 
channel flow.  The implication is that these trends 
arise from two physical process.   

 
To access the proper scaling, two figures  were 

constructed.  Figure 6 displays the uτ  scaling for  the 

values of <ωxωx>
+

 and <ωzωz>
+

at the wall.   The 
curves show an increase with Reτ confirming that this 
is not the proper scaling.   Also shown are similar data 
from channel flow simulations.    
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In addition, the maximum values for  <ωyωy>

+
 

are given.   They are constant indicating that this is 

the proper scaling for  <ωyωy>
+

.  
The same vorticity is displayed in mixed scaling 

(U0 uτ)
1/2on Fig. 7.  The curves are reasonably 

constant.  However,  the ωz vorticity still has a slight 
downward trend.  It would be useful to have data at 
higher Reynolds numbers and from different sources .   
 

 

 

 
On Fig. 8 the <ωxωx>#

(y+) curves are shown for 
various Reynolds numbers.  The data  correlates well 
for low y+, but the peak that occurs about y+=15 

continues to decrease with Re.  The solid black line an 
estimate for the behavior as very high Re.  This is 
essentially a guess for the first term in Eq. 11.   

 
In principle, the second term in Eq. 11 is found 

from: 
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The data after processing by Eq. 12 are shown on Fig. 
9.  The correlation is good.  The solid black line is an 
estimate for channel flow data.  It fits well except near 
y+= 4. 

 
 

Charts similar to Figs. 8 and 9 are shown as Figs. 

10 and 11 for <ωzωz>
#

 and 
  
 <!

z
!

z
>

1

+
 .  The 

solid lines are estimates for the limiting behavior.  It is 
essentially the second term in Eq. 11.  The proper 
trends are again observed. 
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OVERLAP REGION  

The zero-term in Eq. 11, which exists for the x 
and z-direction vorticity components, decays to zero 
exponentially.  Therefore there is no matching term in 
the outer region.  The vorticity generated at the wall 
by the potential components scrubbing the wall does 
not diffuse into the outer region.   

 
 

A log-log plot of <ωxωx>
+ is given as Fig. 12.  

Curves for various Reynolds numbers collapse in an 
overlap region that has a minus-one slope.   This is 
typical of all vorticity components.  The common 
parts are: 
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If the common part has a minus-one slope there 
must be a change in scale between the inner and outer 
regions.  The proper scaling in the outer region is 
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In outer variables Eq. 13 is 
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Figure 13 is a log-log plot of  

 
<!

x
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x
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" in the 

outer variable Y.  The minus-one common part is 
evident. 

 
 

OUTER REGION  
The convergence of curves for various Reynolds 

number is shown in Fig. 14 for  
 
<!

x
!

x
>
" .  Other 

components converge similarly and are not shown.  
Recall that the Kolmogorov time scale is 

  
! = "# / u

!

3  .  Thus, the outer vorticity is scaled by 

1/τ2, implying that dissipation is the dominant 
process. 
 

All three vorticity components are given in the 
outer variables on Fig. 15.  The curves are for 
Reτ =1300 and therefore represent the limiting values 
for high Reynolds numbers. It is observed that the 
<ωy ωy> curves are about 15 % higher than the other 
components that are nearly the 
same.
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SUMMARY 
An asymptotic expansion of vorticity fluctuations in 
the inner region requires two terms as given in Eq. 11.   
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The first is scaled with the mixed velocity
  

U
0
u
!

 while 

the second scales with 
 
u

!
.  An exception is the vertical 

vorticity which has only the second term.  It is proposed 

that the  
  

U
0
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 scaling is the viscous response to 

potential fluctutions scrubing the wall.  This decays 
exponentially in y+ and extends to about  y+ = 50 .   
Estimates for the first terms are shown in Fig.16 for 
boundary layers and channels.  Since potential flows are 
often associated with the outer layer the similarity is not 
expected 

 
The second term scales with the friction velocity 

and contains the Reynolds shear stress active motions.  
Estimated behaviors are displayed in Fig. 17.   The 
difference between boundary layers and channel flows 
are inconsequential and the channel flow estimates 
adequately describe the boundary layer behavior.  
Although the  <ωyωy>+ curves must be zero at the 
wall, it is an assumption with respect to the other 
components.  As the curves approach the overlap 
region they all obey the overlap law C/y+  

The proper scaling in the outer region is 
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Kolmogorov time scale.   In order to change scaling 
between the regions, the overlap law for all 
components is C/y+ in inner variables and C/Y in outer 
variables.    
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