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ABSTRACT 

Direct numerical simulation (DNS) of fully-developed 

turbulent curved pipe flow has been performed to 

investigate the effects of wall curvature on turbulent flow 

and heat transfer. We consider a fully developed turbulent 

curved pipe flow with axially uniform wall heat flux. The 

Reynolds number under consideration is Reτ=210 based 

on the mean friction velocity and the pipe radius, and the 

Prandtl number is 0.71. The mean velocity profiles and 

turbulent intensities obtained from the present DNS are in 

good agreement with the previous numerical and 

experimental results currently available. The mean 

quantities and various turbulence statistics are presented 

for flow and temperature fields.  

 

 

INTRODUCTION 

Turbulent pipe flow has been attracting researchers' 

attention for decades due to its high applicability to many 

engineering devices such as heat exchangers, chemical 

reactors, power-plant piping systems, to name a few. In 

particular, turbulent characteristics of fluid flow and heat 

transfer have been intensively studied because complete 

understanding of them can lead to a significant 

improvement of transport efficiency in such devices, or to 

an effective way of reducing flow-accelerated erosion-

corrosion (Enayet et al., 1982; Sudo et al., 1998, 2000). 

A large volume of work on turbulent straight-pipe 

flow can be found in the literature, including numerical as 

well as experimental studies. Most of the numerical 

investigations were carried out by Direct Numerical 

Simulation (DNS) or Large Eddy Simulation (LES), and 

some reliable data bases were obtained (Unger and 

Friedrich, 1991; Eggels et al., 1994; den Toonder and 

Nieuwstadt, 1997; Wagner et al., 2001; Feiz et al., 2003; 

Wu and Moin, 2008). However, that was not the case for 

turbulent curved-pipe flow even though curved parts are 

widely used in a modern piping system to save space and 

also to enhance scalar transport via the secondary flows 

incurred by the wall curvature. 

In the past, studies on curved-pipe flow were mainly 

done by experiments (Adler, 1934; Ito, 1959; Mori and 

Nakayama, 1965) or by theoretical analysis (Collins and 

Dennis, 1975; Wang, 1981; Dennis and Ng, 1982; 

Germano, 1982, 1989). One can refer to Berger et al. 

(1983) and Ito (1987) for an extensive review on the 

subject. Recently, more attention has been paid to 

turbulent flow in a curved pipe, and detailed experimental 

measurements (Webster and Humphrey, 1993, 1997) as 

well as full three-dimensional (3D) simulations using 

DNS/LES (Boersma and Nieuwstadt, 1996; Boersma, 

1997) have been performed. Hüttl et al. (1999) studied the 

effects of wall curvature on laminar pipe flow by using 3D 

simulation, and subsequently Hüttl and Friedrich (2000, 

2001) compared their DNS results on the average velocity 

and velocity fluctuations in the fully developed curved-

pipe flow at Reτ=230 with those in the straight-pipe flow. 

As far as heat/mass transfer in curved-pipe flow is 

concerned, research has been focused on the effects of the 

secondary flows induced by the wall curvature on the 

scalar transport. Mori and Nakayama (1965, 1967, 1967) 

theoretically computed resistance coefficients and heat 

transfer coefficients in laminar and turbulent curved-pipe 

flows, and showed that their results are well consistent 

with the experimental measurements (Pratt, 1947; 

Martinelli, 1947; Seban and McLaughlin, 1963; Rogers 

and Mayhew, 1964). Most of the following numerical 

investigations (Akiyama and Cheng, 1971; Kalb and 

Seader, 1972, 1974; Patankar et al., 1974; Yao and Berger, 

1978; Zapryanov et al., 1980; Prusa and Yao, 1982), 

however, mainly studied correlation between Re (or Pr) 

and heat transfer rate. To the authors' best knowledge, in-

depth studies on turbulence statistics of near-wall scalar 

fluctuations are rare. They are believed to significantly 

affect local heat/mass transfer rates on the pipe wall. The 

aims of the current investigation are to elucidate the near-

wall characteristics of turbulent heat transfer in fully-

developed curved-pipe flow by using DNS, and also to 

identify the curvature effects on the momentum and scalar 

transports by comparing our results with those of turbulent 

straight-pipe flow. 

 

GOVERNING EQUATIONS 

The coordinate system used in the current study, a 

toroidal system, is presented in Fig. 1. As suggested by 

Wang (1981) and Germano (1982, 1989), an orthogonal 

curvilinear coordinate system is introduced in conjunction 

with a Cartesian coordinate system. By using the 
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curvilinear coordinates, r for the radial direction, θ for the 

circumferential direction and s for the axial direction, a 

Cartesian position vector x can be expressed as 

 

 x=PO =R(s) + r cos θ N(s) + r sin θ B(s) (1) 

 

where R represents a local point on the center curve. T, N 

and B are the tangential, normal, and binormal unit 

vectors. Using the relations 
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where κ is the curvature, the orthogonal metric of this 

system is given by 

 

     2222 cos1 dsrrddr  dxdx   (3) 

 

where dr, dθ, ds are the infinitesimal increments in the 

radial, circumferential and axial directions, respectively. 

With this metric, one can obtain the scale factors hr, hθ 

and hs. (Batchelor, 1970) 

 

 hr = 1 ,  hθ = r ,  hs = 1 + κ r cosθ           (4) 

 

With these scale factors we can derive the continuity, 

momentum and energy equations in a conservative form. 

The governing incompressible continuity, momentum and 

energy equations turned out to be as follows (Boersma, 

1997; Kalb and Seader, 1972) : 
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θ-momentum: 
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s-momentum: 
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Figure 1. Coordinate system. 
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Energy equation: 
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Here, ρ, p, ν, α represent density, pressure, kinematic 

viscosity, and thermal diffusivity of the fluid, respectively. 

τij is the symmetric viscous stress tensor with the 

following components 
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NUMERICAL METHODS AND BOUNDARY 

CONDITION 

The governing equations (Eqs. (5) ~ (9)) were 

discretized by using a finite volume method. All the 

physical variables were non-dimensionalized with the pipe 

radius (a), mean friction velocity (uτ), and mean friction 

temperature (Tτ=qwα/uτ). Here, qw is the wall heat flux that 

is constant. The mean friction velocity (uτ) is defined as 

follows (Boersma, 1996; Hüttl and Friedrich, 2000, 

2001) : 
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A second-order central difference scheme was used 

for spatial discretization. A hybrid scheme was employed 

for time advancement. In particular, following Akselvoll 

and Moin (1996), we partitioned the r-θ domain into the 

core region (0≤ r ≤ rc) and the outer region (r ≥ rc). Here, 

rc is the boundary between the two regions, and we set 



August 28 - 30, 2013 Poitiers, France

ROTE

3 

 

r/a

U
s
/
U

b

-1.0 -0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0
Present

Webster and Humphrey (1997)

Webster and Humphrey (LDV, 1993)

 
Figure 2. Mean axial velocity profiles along a horizontal 

line for Reb=5480, κ=1/18.2. 
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Figure 3. Temperature profiles for K=512, κ=1/15.2, 

Pr=0.7. 

 

 

rc=0.5a. In the core region, both the convective and 

diffusion terms are implicitly time-advanced only in the 

circumferential direction, while the other terms are 

explicitly advanced. On the other hand, in the outer region, 

the convective and diffusion terms are implicitly treated 

only in the radial direction, and the other terms are 

explicitly advanced. In both regions, the Crank-Nicolson 

method was employed as the implicit scheme, while a 

third-order Runge-Kutta method was used as the explicit 

scheme. To decouple the continuity and momentum 

equations, a fractional step method was used (Kim and 

Moin, 1985). 

The no-slip condition was imposed on the pipe wall, 

while flow was assumed to be periodic in the axial 

direction. For the temperature boundary conditions, heat 

flux (qw) was set constant on the pipe wall, and it was 

assumed that the temperature field is periodic in the axial 

direction (Kalb and Seader, 1972; Patankar et al., 1977). 

The flow is driven in the axial direction by a mean 

pressure gradient Δp/Δs, which must balance the viscous 

friction along the pipe wall and can be estimated from a 

simple force equilibrium (Boersma and Nieuwstadt, 1996) 
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(12) 

where D and Δs represent the pipe diameter (2a) and a 

distance along the pipe centerline, respectively. 

 

 

COMPUTATIONAL DETAILS 

The pipe length along the axial coordinate s is taken to 

be 15a. The Reynolds number (Reτ) considered here is 210 

based on the pipe radius (a) and the mean friction velocity 

(uτ), whereas the Prandtl number (Pr) is 0.71. The 

curvature (κ) is 1/18.2. The numerical resolution was 

determined by a grid refinement study. The number of 

grid cells used in the current investigation was 

96(r)×192(θ)×256(s). A uniform grid was used in θ and s 

directions. In the wall-normal radial direction, grid points 

were clustered close to the wall. (Boersma, 1997; Hüttl 

and Friedrich, 2000, 2001) 

 

 

VALIDATION 

To validate our code, our results are compared against 

those of other authors currently available. In Fig. 2, the 

mean axial velocity profile along a wall-normal radial line 

on the symmetric plane is presented, when The Reynolds 

number (Reb) equals 5,480 with κ=1/18.2. Here, the 

Reynolds number, Reb(=UbD/ν), is defined based on the 

axial mean bulk velocity (Ub) and the pipe diameter (D). 

The experimental result (LDV) of Webster and Humphrey 

(1993) and the DNS result of Webster and Humphrey 

(1997) are also shown together. Our result is in good 

agreement with theirs. 

Fig. 3 presents the nondimensionalized temperature 

profiles along the lines A-A and B-B for K=512, κ=1/15.2, 

Pr=0.7 in comparison with the numerical simulation of 

Kalb and Seader (1972). Here, Tm and Tw represent mean 

bulk temperature and wall temperature, respectively. The 

Dean number (K=Reb ) is set as K=512. The two results 

are in good agreement. It is also seen that the temperature 

profile on A-A very much resembles the axial velocity 

profile shown in Fig. 2. 

 

 

RESULTS 

Fig. 4 shows the mean axial velocity profiles along the 

horizontal line (A-A) and vertical line (B-B) for Reτ=210, 

κ=1/18.2. Due to the curvature effect, the peak is shifted 

towards the outer wall (r/a=1) along A-A, whereas the 

profile is symmetric with respect to r/a=0 along B-B. It is 

also seen that both the mean axial velocity and its gradient 

in the immediate vicinity of the outer wall are larger than 

those very near the inner wall (r/a=-1). However, the 

profile of mean axial velocity along the vertical line (B-B) 

is symmetric with respect to the center plane, and has the 

maximum points near the outer as well as the inner walls. 

Figure 5 presents the profiles of nondimensionalized 

mean temperature( TTTT w / ) on the horizontal 

line (A-A) and on the vertical line (B-B). Here, Tw denotes 

wall temperature. The mean temperature distributions on 

the two lines closely follow those of the mean axial 

velocity component (Fig. 4). It is seen in Fig. 5 that the 

mean temperature gradient on the outer wall (r/a=1) is 

steeper than that on the inner wall (r/a=-1) on the 
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Figure 4. Profiles of mean axial velocity component, 

Reτ=210, κ=1/18.2. 
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Figure 5. Mean temperature profiles, Reτ=210, κ=1/18.2, 

Pr=0.71. 

 

 

horizontal line (A-A). This indicates, from the viewpoint 

of local heat transfer rate, that the curvature enhances heat 

transfer on the outer wall, but that is not the case on the 

inner wall. On the other hand, for the curved pipe flows, 

the mean temperature is almost constant along the central 

part of the vertical line (B-B). 

Distributions of mean velocity and temperature fields 

are depicted on an r-θ plane in Fig. 6. Contours of the 

axial velocity component are presented in Fig. 6(a). The 

high-velocity region is shifted towards the outer wall due 

to the curvature, but still symmetric with respect to the 

horizontal line. It is also noticed that in the central region, 

the contours are almost perpendicular to the horizontal 

line. Contours of nondimensionalized mean temperature 

are shown on a r-θ plane in Fig. 6(b). As also seen in Fig. 

5, the high-temperature region is shifted towards the outer 

wall due to the curvature effect, and the mean temperature 

is almost constant in the vertical direction in the central 

region. The secondary flows are clearly seen in Figs. 6(c)-

6(d) that presents the velocity vectors and streamlines, 

respectively, on an r-θ plane. The centrifugal force is 

mainly balanced by the pressure gradient. Since the axial 

momentum near the pipe wall is very small, the balance is 

broken, resulting in movement of fluid particles towards 

the inner wall. Consequently, fluid particles near the inner  
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Figure 6. Secondary flow in an r-θ plane; (a) mean axial 

velocity contour, (b) nondimensionalized mean 

temperature contour, (c) velocity vector plot, (d) 

streamlines. 
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Figure 7. Profiles of root-mean-square of the temperature 

fluctuation, Reτ=210, κ=1/18.2, Pr=0.71. 
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Figure 8. Contours of rms of the temperature fluctuation 

in an r-θ plane, Reτ=210, κ=1/18.2, Pr=0.71. 

 

 

wall are driven towards the outer wall due to continuity, 

forming a pair of counter-rotating and symmetric 

secondary flows. Therefore, a stagnation point is formed 

at each end of the horizontal line (A-A), and significant 

circumferential velocity is induced near the pipe wall. 

Figure 7 shows profiles of the temperature fluctuation 

rms along the horizontal line (A-A) and vertical line (B-B). 

Like the mean temperature profile on A-A in Fig. 5, both 

rms value and its gradient are larger near the outer wall 

(r/a=1)  than near the inner wall (r/a=-1). On the vertical 

line (B-B), both rms value and its gradient are large near 

both ends. Figure 8 presents contours of temperature 

fluctuation rms in an r-θ plane, confirming that rms is 

large in the central region as well as near the upper and 

lower walls. 

 

 

CONCLUSION 

Direct numerical simulation of fully-developed 

turbulent curved pipe flow has been performed to study 

the effects of the pipe curvature on the characteristics of 

flow structures and heat transfer. The parameters were set 

as Reτ=210, Pr=0.71, and κ=1/18.2. The curvature induces 

a pair of counter-rotating secondary flows on a cross-

section, and the high-velocity region is shifted towards the 

outer wall. Furthermore, the mean axial velocity 

component is almost constant in the vertical direction in 

the central region of the pipe. The mean temperature 

distribution on a cross-section is remarkably similar to 

that of the mean axial velocity component. Rms of 

temperature fluctuation is large in the central region as 

well as near the upper and lower walls.  
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