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ABSTRACT
Strong turbulence is sustained in a precessing smooth

cavity. Since industrial applications of this system to mixer,
chemical reaction chamber, etc. are expected, we quantify
the mixing ability of sustained turbulence in a precessing
sphere by the help of direct numerical simulations. More
concretely, fluid particles in the sphere are numerically
tracked, and the time for initially separated particles by a
central plane to be mixed is evaluated. Statistics of turbu-
lence in the sphere depend strongly on the rate of precession
(the Poincaré number), and therefore the mixing ability is
also controlled by this parameter. When the Reynolds num-
ber defined by the spin angular velocity, the radius of sphere
and the kinematic viscosity of fluid is fixed at Re = 40000,
the most efficient mixing is achieved when Poincaré number
is about 0.07.

Introduction
In this paper, we propose an effective technique to mix

the confined fluid in a smooth cavity only by its rotational
motion. Recall that, in general, fluid motion in a cavity
rotating at a constant angular velocity always settles down
to the solid-body rotational flow. This fact implies that an
unsteady rotation of vessel is necessary to sustain efficient
mixing of confined fluid.

In the following, we shed light on one of the simplest
unsteady rotational motions of a cavity: i.e. the so-called
precession. A precession is the rotation of spin axis around
another axis (the precession axis); see an example of a pre-
cessing sphere in figure 1. In the following, we restrict
ourselves in the case that the two axes are orthogonal. Al-
though it is well-known mainly by geophysicists (the spin
axis of the Earth is precessing weakly) since the seminal
experiment by Malkus (1968) that a weak precession of
a cavity can lead to developed turbulence of the confined
fluid (see also experiments by Vanyo 1973, 1991; Manasseh
1992, 1994, 1996; Kobine 1995, 1996; Vanyo et al. 1995;
Vanyo & Dunn 2000; Noir et al. 2001b,a, 2003; Cardin &
Olson 2007; Meunier et al. 2008; Lagrange et al. 2008 and
numerical studies by Hollerbach & Kerswell 1995; Tilgner
1999a,b; Tilgner & Busse 2001; Lorenzani & Tilgner 2001,
2003; Tilgner 2005, 2007; Wu & Roberts 2009; Nore &
Leorat 2011; Koike et al. 2012), its engineering application
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Figure 1. Precessing sphere. The spin and the precession
axes are set to be orthogonal. The coordinate (x,y,z) is fixed
in the precession frame, which rotates at a constant angular
velocity ΩΩΩp.

is quite limited.

As shown in our previous experiments (Goto et al.,
2007, 2011), this system is likely to have wide applications
as an efficient mixer without impellers. So this paper aims
at evaluating, by direct numerical simulations (DNS), the
mixing efficiency of turbulence sustained in the precessing
sphere (figure 1).

Direct Numerical Simulations
One of the advantages of this system is that we can con-

duct DNS under the precisely same condition as in labora-
tory experiments. Since DNS are more suitable for quanti-
tative evaluation of mixing efficiency than experiments, we
perform DNS of turbulence in a precessing sphere by solv-
ing the Navier-Stokes equations

∂
∂ t

uuu+uuu ·∇ uuu = −∇p+
1

Re
∇2uuu+2Γ uuu× êeep (1)

1



August 28 - 30, 2013 Poitiers, France

ROTA

(a1) (b1) (c1)

(a2) (b2) (c2)

(a3) (b3) (c3)

(a4) (b4) (c4)

Figure 2. Temporal evolution of mixing of two fluids. Fluid particles in a thin layer |y| < 0.05a are visualized. Their color
(blue or yellow) is determined at the initial time. Re = 40000. (a) Γ = 0.01, (b) 0.1 and (c) 0.4. (1) t̂ = 0, (2) 5Ts, (3) 10Ts and
(4) 15Ts.

and the continuity equation

∇ ·uuu = 0 (2)

for an incompressible fluid under the non-slip boundary
condition

uuu = êees × rrr . (3)

on the spherical wall. In the above governing equations in
a non-dimensional form, uuu(rrr, t), p(rrr, t), rrr and t are non-
dimensionalized velocity field, pressure field, position vec-
tor and time, respectively; where the radius a of the sphere
and the reciprocal Ωs

−1 of the magnitude of spin angular
velocity are employed as characteristic length and time. eees

and eeep denote the unit vectors parallel to the spin and the
precession axes, respectively.

Note that since (1)–(3) depend only on the two non-
dimensional parameters,

Re =
a2Ωs

ν
(Reynolds number) , (4)

where ν is the kinematic viscosity of fluid, and

Γ =
Ωp

Ωs
(Precession rate, Poincaré number) ; (5)

these two parameters Re and Γ control the system.
In our DNS, in order that (2) is precisely satisfied, the

velocity field is expressed by two scalar fields as

uuu = ∇×
(
∇× (rrrΦ)

)
+∇× (rrrΨ) , (6)

and the governing equations for these two scalar fields
(Φ(rrr, t) and Ψ(rrr, t)) are numerically solved. The spatial
derivatives in the governing equations are estimated by the
spectral method (where the spherical harmonics and the
Zernike spherical polynomials are employed; see Kida &
Shimizu (2011) for more details); whereas the temporal
integration is made by the second-order Adams-Bashforth
method and the Crank-Nicolson method. It has been veri-
fied that statistics (such as the mean velocity and turbulence
intensity) of simulated turbulence precisely coincide with
the result of our particle image velocimetry in the labora-
tory.

In order to estimate mixing efficiency, we track I fluid
particles advected by the simulated turbulence. These parti-
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cles are distributed uniformly in the sphere at a time (̂t = 0)
when turbulence is in a statistically stationary state. The
position vector xxxi of the i-th particle is simulated by inte-
grating the advection equation,

dxxxi

dt
= uuu

(
xxxi(t), t

)
, (7)

by the second-order Adams-Bashforth method.
Examples of thus simulated particle distributions are

shown in figure 2 for three different Poincaré numbers Γ =
0.01, 0.1 and 0.4 at a fixed Reynolds number Re = 40000.
Only the fluid particles in a thin central layer of the sphere
are shown in this figure. Ts denotes the period of spin.

Mixing Efficiency Estimation
Mixing efficiency is estimated as follows. First, we

divide the fluid particles into two groups (say, group-A and
-B) at the initial time (̂t = 0) of particle tracking; e.g. the
blue and yellow particles in figure 2. Secondly, we divide
the spherical cavity into J sub-domains of same volume δV ,
and let ρ j be nA j/(nA j + nB j) where nA j and nB j are the
numbers of particles of A- and B-group, respectively, in the
j-th sub-domain. Then, the mixing index M is defined by

M = 1−2σ (mixing index) (8)

where σ =
√

1
J ∑J

j=1 (ρ j −0.5)2 is the standard deviation

of ρ j .
Note that (i) when the particles are perfectly segre-

gated (i.e. ρ j takes the value either 0 or 1), M = 0 because
σ = 0.5; and that (ii) when the mixing is completed (i.e. ρ j
becomes 0.5 in all the sub-domains), M = 1 because σ be-
comes zero. (For simplicity, we have assumed that the num-
ber of particles in group-A is the same as that in group-B.)

This mixing index was originally proposed by Danck-
werts (1952) and has been used in the field of chemical en-
gineering. In practice, however, we may track only a fi-
nite number of particles, then the standard deviation σ of
ρ j does not vanish and takes a finite value of σ̃ =

√
J/4I

even when the mixing is completed. We have assumed, in
the derivation of the above expression of σ̃ , that I/J is not
too small. Note also that σ̃ → 0 as I/J → ∞. Therefore, in
our DNS with a finite number of particles, the mixing index
(8) should better to be modified as

M̃ =
1−2σ
1−2σ̃

(modified mixing index) (9)

so that M̃ becomes 1 for the perfect mixing.

Results
Our laboratory experiments show that large-scale mo-

tions of turbulence at sufficiently high Re are independent
of Re and determined only by the Poincaré number Γ . This
remarkable observation is verified also by our DNS (Koike
et al., 2012). These observations imply that the mixing effi-
ciency is also controlled mainly by the Poincaré number Γ .
Therefore, here we report DNS results for different Poincaré
numbers Γ at a fixed Reynolds number Re = 40000.
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Figure 3. Temporal evolution of the mixing index M̃ de-
fined by (9) for the sub-domain size δV/a3 ≈ 2.5 × 10−4.
Reynolds number is fixed at Re = 40000. Poincaré number
Γ = 0.01, - - - - -; 0.02, - - - - -; 0.04, - - - - -; 0.1, ——; 0.2,
——; 0.4, ——.

A main result is shown in figure 3, where the temporal
evolution of the modified mixing index M̃ is plotted for dif-
ferent Γ . It is clearly observed in this figure that the mixing
efficiency depends strongly on the Poincaré number Γ , and
the most efficient mixing takes place when Γ is between
0.04 and 0.1.

This result is consistent with the experimental observa-
tion. Flow visualizations by reflective flakes are shown in
figure 4 for the same Reynolds number (Re = 40000) as in
the present DNS. Turbulence is quiescent for smaller (figure
4a) or larger (c) Poincaré numbers because the rotation of
vessel around the spin axis or the precession axis dominates
and turbulence tends to simple rotational flow around each
axis. For example, in the larger Γ case, laminar structure
along the precession axis is observed in the central region
of the sphere (figure 4c); this is consistent with the DNS
result (figure 2c) that the turbulent mixing is rather weak in
the region. When the Poincaré number Γ is around 0.1, on
the contrary, large-scale internal shear flow is created in the
central region of sphere, and developed turbulence with fine
structures (figure 4b) is sustained inside the sphere. This is
the reason why strong mixing takes place for this parameter.

As a further detailed analysis, we have evaluated M̃
at t̂ = 10Ts (where Ts denotes spin period) for the Poincaré
numbers between Γ = 0.04 and 0.1. Then, it is shown that
the most efficient mixing takes place when Γ ≈ 0.07 and
M̃ (10Ts) ≈ 0.98 for this Γ . This result implies that the
mixing is completed after only 10 spin periods for this rela-
tively small Poincaré number, Γ = 0.07.

Conclusion
Conducting DNS of turbulence in a precessing sphere

and of fluid particles advected by the turbulence, the effi-
ciency of turbulent mixing is evaluated. As an example, the
mixing of two fluids initially separated by the central plane
perpendicular to the precession axis is investigated. It is
then shown that mixing is most efficient when the Poincaré
number (5) is very small (Γ ≈ 0.07) for the fixed Reynolds
number at Re = 40000, and that almost perfect mixing re-
quires only 10 spin periods. This is consistent with our ex-
perimental observation (figure 4) that most developed tur-
bulence is sustained in the sphere when Γ = O(0.1) for a
fixed Reynolds number. Physical mechanism of this effi-
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Figure 4. Turbulence sustained in the precessing sphere.
Visualization by reflective flakes in the laboratory. Re =

40000. (a) Γ = 0.01, (b) 0.1 and (c) 0.4. The perspective is
along the spin axis, and the vertical direction in the figure is
parallel to the precession axis.

cient mixing in the weakly precessing sphere is under insti-
gation on the basis of DNS data analysis.
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