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ABSTRACT
A stochastic Lagrangian model for the scalar gradient

(Gonzalez, 2009) is extended to Schmidt numbers larger
than unity as a necessary step to make the approach valid
for a wider range of mixing problems. The basic idea is
to derive the damping time scale of the modelled molecular
diffusion from the phenomenology of stretched scalar lay-
ers. In this context, the diffusive damping rate is itself given
by a non-linear stochastic equation. Although the model
has to be checked further and improved in some respects
– for instance, as regards the scaling of the scalar gradient
intermittency with the Reynolds number –, first results in
isotropic turbulent flow agree with the standard physics of
scalar turbulence.

INTRODUCTION
The gradient of a scalar rules molecular diffusion and

also gives a detailed insight into the small-scale structure
of scalar fields and mixing patterns. It is actually the finest
level at which micromixing in fluid flows can be investi-
gated. In fact, the efficiency of micromixing is revealed
by the mean dissipation rate of the energy of scalar fluctua-
tions – or scalar dissipation – which directly involves the va-
riance of the scalar gradient. The study of the mechanisms
of scalar gradient production is therefore closely connected
to the concerns of modelling and predicting small-scale mi-
xing in process and chemical engineering or in combustion
flows.

In this context, a number of studies have addressed the
small-scale structure of scalar fields (Pumir, 1994; Buch &
Dahm, 1996; Vedulaet al., 2001; Brethouweret al., 2003;
Su & Clemens, 2003; Schumacher & Sreenivasan, 2005;
Kushniret al., 2006); see also Warhaft (2000) for a review
on scalar turbulence. Because scalar gradient production
is a matter of both strain level and scalar gradient ‘geom-
etry’ through orientation in the strain eigenframe, the me-
chanisms promoting scalar dissipation are not that simple.
In particular, they indirectly involve the tight interaction of
strain and vorticity (Vedulaet al., 2001; Brethouweret al.,
2003; Gonzalez, 2012) and may also be deeply affected
by the dynamics of the scalar gradient orientation (Smyth,
1999; Lapeyreet al., 2001; Brethouweret al., 2003; Gon-
zalez & Paranthoën, 2010).

Accounting for such detailed mechanisms in the pre-
diction of small-scale mixing thus needs models which are
directly based either on a presumed local flow structure

(Pullin & Lundgren, 2001) or on the behaviour of the scalar
gradient derived from the computation of the small-scale
velocity field. The latter approach was used in the stochas-
tic modelling (Gonzalez, 2009; Li, 2011) which was shown
to retrieve a number of detailed properties of the scalar gra-
dient.

In the present study the stochastic Lagrangian model
devised in Gonzalez (2009) is extended to Schmidt num-
ber larger than unity to make the approach suitable for ad-
dressing a wider range of mixing problems. Exploring high-
Schmidt number flows may also shed new light on basic
phenomena such as small-scale anisotropy (Yeunget al.,
2002; Brethouweret al., 2003; Gonzalez & Paranthoën,
2004). The paper details the modelling of the molecular
diffusion of the scalar gradient as well as the way in which
it is implemented into the stochastic model. First results of
this approach are then presented and discussed.

MODELLING MOLECULAR DIFFUSION OF
THE SCALAR GRADIENT

The exact equation for the gradient,GGG = ∇θ , of a
scalarθ is:

dGGG
dt

=−AAAT GGG+D∇2GGG (1)

whereAAA = ∇∇∇u is the velocity gradient tensor andD is the
molecular diffusivity of the scalar in the fluid. Provided that
the velocity gradient is known for instance, through an ad-
ditional equation – see below –, the stretching term – first
one on right-hand side – does not need to be modelled. A
model, however, has to be devised for the molecular diffu-
sion term.

In Gonzalez (2009) the modelling ofD∇2GGG was
achieved consistently with the approach used by Jeong &
Girimaji (2003) and Chevillard & Meneveau (2006) for the
viscous term of the velocity gradient equation. It comes
to model the molecular diffusion term expressed in La-
grangian coordinates by a friction term based on a constant
time scale. In Eulerian coordinates, however, the effective
friction time scale is not constant as it includes information
on fluid elements deformation through the Cauchy-Green
tensor – see Eq. (10) for the velocity gradient.

The present approach is different in that the molecu-
lar diffusion term is directly modelled in connection to the
structure of the scalar gradient field. It is indeed taken
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for granted that this small-scale structure is sheet like and
can be pictured by stretched scalar layers which eventually
fade out as their thickness reaches the diffusive lengthscale
(Buch & Dahm, 1996; Su & Clemens, 2003; Kushniret al.,
2006).

As in Gonzalez (2009), a friction model is assumed
for the molecular diffusion term,D∇2GGG ≡ − fdGGG, but the
derivation of fd , this time, proceeds as follows:

1. we consider the one-dimensional problem of a scalar
layer initially defined by a gaussian profile,C(y,0) =
C0 exp(−y2/s2

0), and undergoing a normal strain rateγ
(γ < 0 for compressional strain). The solution of the
advection-diffusion equation forC(y, t) is:

C(y, t) =C0(1+4τ)−1/2 exp[−(y2/s2)/(1+4τ)] (2)

with:

dτ =
D

s2 dt and
ds
dt

= γs (3)

From Eq. (2), the gradient ofC is easily derived as:

G(y, t)=−2C0s−2(1+4τ)−3/2yexp[−(y2/s2)/(1+4τ)]
(4)

2. the molecular diffusion time scale,Td , of the scalar gra-
dient is estimated as:

T−1
d = fd = D

∣∣∣∣
∂ 2G/∂y2

G

∣∣∣∣ (ym, t) (5)

whereym is time dependent and define the position of
the extrema ofG(y, t); from Eq. (4):

y2
m(t) =

s2(1+4τ)
2

(6)

From Eq. (5), with the equation for∂ 2G/∂y2 – which
is easily derived from Eq. (4) and is not given – and
Eqs. (4) and (6):

fd =
2D
y2

m
(7)

3. the diffusive rate,fd , has to be included in a stochas-
tic model to account for variable strain experienced by
the scalar gradient; an equation forfd is thus needed
and derived by differentiating Eq. (7) accounting for
Eqs. (3) and (6) and again for the definition offd ; the
equation forfd is finally written as:

d fd =− fd( fd +2γ)dt (8)

In the stochastic modelγ is the effective strain rate ex-
perienced by the scalar gradient,γ = Gα Sαβ Gβ/GGG2

– with Sαβ the components of the strain tensor,SSS =

(AAA+AAAT )/2 – and is negative or positive for compres-
sional or extensional events, respectively.
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Figure 1. Sample signals offd (thick line) and−2γ ; in the
figure positive values of−2γ correspond to compressional
strain and negative ones to extensional strain.

Equation (8) includes only time scales and is thus suit-
able for a pointwise, Lagrangian approach. It is also inte-
resting to notice that it is a non-linear damping equation.
The posivity offd(t) is ensured provided thatfd(0)> 0; for
an extensional strain rate (γ > 0) fd does not tend to−2γ ,
but asymptotically to zero as a result of the non-linearity
of Eq. (8). For a steady compressional strain rate (γ < 0)
fd tends to−2γ ; this is consistent with the fact that in a
stretched scalar layer the maximum of the scalar gradient
norm eventually decays at the net rateγ =−γ − fd as a re-
sult of both enhancement by compression at the rate−γ and
damping by diffusion at the ratefd .

Becauseγ is defined in terms ofGGG itself, the friction
term,− fdGGG, in the equation forGGG is implicit through fd . It
also responds to the effective, instantaneous strain experi-
enced by the scalar gradient. Figure 1 shows sample signals
of both−2γ and fd .

Finally, Eq. (8) does not explicitly include the scalar
diffusivity and thus Schmidt number effects. In fact, the
latter are felt through the initial condition, in the transient
regime and Eq. (8) has thus to be combined with a renewal
of fd ; this is done at the start of each compressional cycle as
fd0 =CDGGG2 whereC is a constant which has the dimension
of θ−2; C = 2 in the present calculations.

STOCHASTIC LAGRANGIAN MODEL
Stochastic Equations

The modelled stochastic Lagrangian equation for the
scalar gradient is now written as:

dGGG =−(AAAT GGG+ fdGGG)dt +(2Scfd)
1/2dWWW G (9)

with dWWW GGG = dt1/2ξξξ the increment of a Wiener process
whereξξξ is a vectorial, Gaussian noise such that〈ξi〉 = 0
and〈ξiξ j〉 = δi j. Becausefd is not a constant, but is itself
the solution of a stochastic equation, Eq. (9) is not in the
standard form used in Gonzalez (2009). The presence of the
Schmidt number, Sc, as a multiplying factor offd ensures
that the amplitude of the forcing noise term is conserved
when the Schmidt number is changed.

Equation (9) is solved together with Eq. (8) – allow-
ing for the renewal offd – and the stochastic equation
of Chevillard and Meneveau for the velocity gradient ten-
sor (Chevillard & Meneveau, 2006; Chevillardet al., 2008;
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Meneveau, 2011):

dAAA =−
(

AAA2− Tr(AAA2)

Tr(CCC−1
τη )

CCC−1
τη +

Tr(CCC−1
τη )

3T AAA

)
dt

+
( 2

T

)1/2
dWWW (10)

Second and third terms including the modelled Cauchy-
Green tensor,CCCτη = exp(τη AAA)exp(τη AAAT ) – whereτη is the
Kolmogorov time scale – respectively model the pressure
Hessian and the viscous term of the velocity gradient equa-
tion; T is the integral time scale. Forcing is ensured by
the increment of a tensorial Wiener process,dWWW = dt1/2ζζζ ,
whereζζζ is a tensorial, Gaussian delta-correlated noise with
〈ζi j〉= 0 and〈ζi jζkl〉= 2δikδ jl −1/2δi jδkl −1/2δil δ jk.

Numerical Solution
Normalizing time scales by the integral time scale,T ,

two parameters are needed to run the model, namely the
Kolmogorov timescale,τη , and the Schmidt number, Sc, or
in other words, the Reynolds and the Péclet numbers. With
τη = 0.1, for instance, the microscale Reynolds number,
Reλ , is close to 150 (Chevillardet al., 2008); Reλ changes
in proportion toτη−1. When needed, the molecular diffu-
sivity is given byD = Sc−1ν – with ν the kinematic visco-
sity – and assuming thatτη = (ν/ε)1/2 is changed keeping
the mean energy dissipation rate,ε, constant. Then, since
ε = ν〈Sαβ Sβα 〉/2 and, from the model results,〈Sαβ Sβα 〉
is found to scale asτ−2

η for τη smaller than 0.15,ν must
scale asν ∼ τ2

η for small to moderate values ofτη – i.e. for
moderate to large Reynolds number.

The numerical method uses a second-order predictor-
corrector scheme (Welton & Pope, 1997) to solve Eqs. (8)-
(10). The calculation is run for 2× 105T with time step
0.1τη and the statistics of the variables under study are de-
rived from their respective stationary time signals.

RESULTS
The variance of the scalar gradient grows linearly with

the Schmidt number (Fig. 2) which makes the mean scalar
dissipation,〈χ〉= D〈GGG2〉, Schmidt number independent, as
expected. Figure 3 shows that the scalar gradient variance
also closely follows a Re2λ -law.

The model underpredicts the kurtosis of scalar gradient
components,K = 〈G4

1〉/〈G2
1〉2 (Fig. 4); at Reλ = 150, for

instance,K should be around 10 at least (Warhaft, 2000).
Even so, the kurtosis, has no Schmidt number dependence
and duly grows with the Reynolds number. Its rise is milder
than the mean power-law that can be derived from the data
gathered by Warhaft (2000) (∼Re0.25

λ vs Re0.38
λ ); the univer-

sal nature of this Reynolds-number dependence, however, is
not firmly shown.

Figure 5 shows that the p.d.f of scalar dissipation de-
parts from lognormality. Deviations from lognormal statis-
tics have already been found both experimentally (Su &
Clemens, 2003) and numerically (Schumacher & Sreeni-
vasan, 2005). The p.d.f in Fig. 5 is plotted for Sc= 2 and
Reλ = 150, but is robust for other values of the Schmidt and
Reynolds numbers. It is worth noticing that this p.d.f, with
a rather fat tail for low dissipation values and a steep fall for
large values, is clearly reminiscent of the p.d.f’s computed
by Schumacher & Sreenivasan (2005).
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Figure 2. Variance of the scalar gradientvs Schmidt num-
ber for Reλ = 150.
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Figure 3. Variance of the scalar gradientvs microscale
Reynolds number for Sc= 2.

CONCLUSION
The physics of stretched scalar layers has been used to

include the effect of large Schmidt number in a stochastic
Lagrangian model for the scalar gradient. Modelling mole-
cular diffusion of the scalar gradient through a friction term,
an equation for the diffusive damping rate is derived from
the behaviour of the scalar gradient in stretched layers. In-
terestingly, the latter is itself a non-linear damping equation
which ensures that the diffusive rate responds to instanta-
neous compressional and extensional effective strain rates
experienced by the scalar gradient.

First results regarding the statistics of scalar dissipa-
tion are consistent with the physics of isotropic scalar tur-
bulence. In agreement with previous studies, the model also
predicts departure from lognormality. However, the kurto-
sis of the scalar gradient components which indicates the
level of intermittency is not quite satisfactory; althoughan
increase with the Reynolds number is duly predicted, the
level of intermittency is underestimated and the Reynolds-
number dependence is rather mild. The model has thus to
be checked further to address a more complex physics such
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Figure 4. Kurtosis of one component of the scalar gra-
dient, K = 〈G4

1〉/〈G2
1〉2, vs microscale Reynolds number;

0.38 is the mean slope derived from the data gathered by
Warhaft (2000).
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Figure 5. Probability density function of(lnχ−〈lnχ〉)/σ
with σ the standard deviation of lnχ; the dashed line is the
lognormal distribution with the same standard deviation.

as anisotropic forcing of the scalar field.
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