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ABSTRACT
The statistical properties of the velocity and scalar

fields, including all three scalar derivatives, were mea-
sured simultaneously in nearly-homogeneous, uniformly
sheared turbulence with two passively superimposed, non-
homogeneous, scalar fields, namely a thermal mixing layer
and the plume of a heated line source. The scalar probabil-
ity density functions were sub-Gaussian in both scalar fields
and the velocity expectations conditioned on the scalar val-
ues were non-linear. The conditional scalar dissipation rate
was strongly anisotropic and could not be surrogated by any
of its three parts along the three axes.

INTRODUCTION
The formulation of statistical balance equations for the

turbulent velocity and for transported scalars in terms of
probability density functions (PDF) is an alternative to the
more common approach, which is in terms of statistical mo-
ments. Although both approaches lead to open hierarchies
of equations, the PDF approach has an advantage in reac-
tive flows, because it can treat arbitrary chemical reactions
exactly, whereas the moment approach requires the use of
simplified models (Pope, 1985). Moreover, the scalar PDF
equation does not require a closure model, other than mod-
els used for closing the velocity PDF equations. Neverthe-
less, the scalar PDF equations also contain terms that re-
quire modelling, in particular conditional expectations of
the velocity fluctuations and the scalar dissipation rate (i.e.,
the rate of destruction of scalar fluctuations) εθ , which are
conditioned upon the value of the scalar fluctuation θ . The
scalar PDF in turbulent flows and related issues have been
the subject of much experimental and theoretical work, but
several issues remain unresolved. In this article, we will
address the following three important questions:

a) What is the shape of scalar PDF, particularly at large
scalar fluctuations? is the scalar distribution Gaussian?

b) What are the shapes of the conditional expecta-
tions of the velocity components, conditioned upon the
scalar value? are they linear?
c) What is the shape of the conditional expectation of
the scalar dissipation rate, conditioned upon the scalar
value? is the scalar field locally isotropic? if not, can
εθ be represented by one of its three parts, particularly
the streamwise one?

We have conducted an extensive experimental study to ad-
dress these questions using new measurements obtained
in specifically designed experimental setups with measure-
ment methods that are capable of resolving accurately the
fine structures of both the velocity and scalar fields. To
avoid complications arising from turbulence inhomogene-
ity, the proximity of walls or external intermittency, we
have considered scalar fields in nearly homogeneous, but
strongly anisotropic, turbulence. In this article, we will dis-
cuss some representative results in two scalar fields, both
of which are non-homogeneous: a thermal mixing layer
(TML), in which the scalar fluctuations are fully mixed and
depend on the local mean fields, and the plume of a line
source (PLS), in which the scalar fluctuations maintain ef-
fects of the scalar injection process. These results fill a
void existing in the literature and are expected to contribute
to our understanding and modelling capability of passive
scalar transport and mixing in turbulent shear flows.

LITERATURE REVIEW
Several experimental studies of passive scalar transport

and mixing have been conducted in wind- and water tun-
nels, in statistically simple, approximately homogeneous
turbulence, which includes grid turbulence (GT) and uni-
formly sheared flow (USF). In GT the turbulence is nearly
isotropic and decays downstream, whereas in USF the tur-
bulence is highly anisotropic and grows downstream. The
simplest scalar field superimposed on the turbulence would
also be an approximately homogeneous one, which can be
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Figure 1: Schematic diagrams of the experimental facility showing the mean velocity and temperature profiles; (a)
thermal mixing layer (TML); (b) plume of line source (PLS).

achieved by the injection of a scalar with either a uniform
mean or a uniform transverse mean gradient. In the case
with a uniform mean, there would be no production of
scalar fluctuations and so any initial fluctuations would de-
cay downstream. In contrast, the uniform scalar gradient
would continuously produce scalar fluctuations.

Scalar PDF: The PDF of scalar fields with a uniform
transverse mean gradient has been studied experimentally in
both GT and USF. In GT produced by a conventional grid,
it was found to have exponential tails (Jayesh & Warhaft,
1992; Gylfason & Warhaft, 2004), whereas, in GT pro-
duced by an active grid, it was sub-Gaussian (Mydlarski &
Warhaft, 1998). In USF, the scalar PDF was found to be es-
sentially Gaussian (Tavoularis & Corrsin, 1981a; Ferchichi
& Tavoularis, 2002). The scalar PDF in non-homogeneous
flows is known to exhibit complex behaviours. For exam-
ple, in the centreline of the wake of a heated cylinder, the
PDF in the far-field had an exponential tail towards the cold
fluctuations and a Gaussian tail towards the hot fluctuations
(Kailasnath et al., 1993).

Velocity conditional expectations: A common ap-
proach for modelling velocity conditional expectations is to
assume that they depend linearly on the scalar value, which
would be the case if the joint velocity-scalar distributions
were jointly Gaussian (Pope, 1985). Tavoularis & Corrsin
(1981a) showed that, for USF with a uniform mean temper-
ature gradient, the joint PDF were Gaussian. The measured
conditional expectations of the velocity in the same type of
flow were generally consistent with the linear assumption
(Ferchichi & Tavoularis, 2002). In GT with a constant mean
temperature gradient, the velocity conditional expectations
were found to be linear, despite the non-Gaussianity of the
scalar PDF (Venkataramani & Chevray, 1978; Mydlarski,
2003). In GT with a scalar mixing layer (Li & Bilger, 1994),
the conditional mean transverse velocity was approximately
linear when the scalar was near the local mean-mixture frac-
tion, but non-linear otherwise. Finally, in a confined wake
flow (Feng et al., 2008), the conditional transverse velocity
was approximately linear, but the conditional streamwise
velocity was not.

Conditional expectation of the scalar dissipation
rate: The scalar dissipation rate, defined as εθ = εθ1 +
εθ2 + εθ3 , where εθ i = γ (∂θ/∂xi)(∂θ/∂xi) (γ is the
molecular or thermal diffusivity), has three components,
which are equal to each other only in perfectly isotropic
scalar fields, a condition that has never been met in practice.
Among these three components, the streamwise one is the
easiest one to measure (from time histories of the scalar and
the use of Taylor’s approximation). For this reason, in most

previous studies εθ has been approximated by 3εθ1. The
conditional expectation εθ1 ∣ θ in GT with a uniform mean
scalar gradient was found to be ∪-shape behind a conven-
tional grid (Jayesh & Warhaft, 1992) but ∩-shape behind an
active grid (Mydlarski, 2003). These two shapes have been
associated with super- and sub-Gaussian scalar PDF (Jayesh
& Warhaft, 1992; Ching, 1993; Mydlarski, 2003). In the
wake of a heated cylinder (Kailasnath et al., 1993), εθ1 ∣ θ
was ∪-shape and diminished at negative fluctuations, thus
resulting in a lobe shape on the cold side. In a jet of a flu-
orescent dye mixture (Kailasnath et al., 1993), the stream-
wise and transverse parts of the conditional dissipation rate
had similar shapes and the authors argued that the shape of
the total conditional expectation was the same as those of
its parts. Mi et al. (1995) measured all three components
of εθ ∣ θ , but not simultaneously, in a slightly heated round
jet; they found that local anisotropy was weaker near the jet
axis and that all three parts of εθ ∣ θ were ∪-shape.

APPARATUS AND INSTRUMENTATION
All experiments were conducted in an open loop wind

tunnel, having a test section that was 0.457 m wide, 0.305 m
high, and 5.07 m long (see figure 1). Uniform mean shear
was generated by an array of 12 parallel channels contain-
ing screens of varying solidity (shear generator) followed
by a flow separator, which straightened the stream and en-
sured uniformity of the initial length scales; the spacing of
these parallel channels was M = 25.4 mm. Passive heating
of the flow was provided by a screen consisting of 49 rib-
bons (0.1×0.8 mm) of Nichrome alloy spaced by 6.1 mm
in the transverse direction and inserted in the wind tunnel
at 1.37 m downstream of the flow separator where the tur-
bulence structure was fully developed. The TML was gen-
erated by heating electrically the upper half of the screen,
whereas the PLS was generated by heating a single ribbon
that was located near the wind tunnel centreline.

A three-wire probe consisting of a cross-wire and a
cold-wire was used for simultaneous velocity and tempera-
ture measurements. The separations between neighbouring
sensor planes were 0.5 mm. Tungsten wires with a diameter
of 2.5 µm and a length to diameter ratio of 340 were spot
welded to the cross-wire prongs and operated at a constant
overheat ratio of 1.5. The cold-wire sensor was made of
90%Pt-10%Rh and had a diameter of 0.63 µm and a length
to diameter ratio of about 950. A second probe, consisting
of two orthogonal pairs of parallel cold-wires, was used to
measure simultaneously the three temperature derivatives.
The sensors in these probe had a diameter of 0.63 µm and
length to diameter ratios of either 635 (those used for mea-
suring the spanwise derivative) or 730 (those used for mea-
suring the transverse derivative); the corresponding sensor
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Figure 2: Time-averaged transverse profiles at x1/h = 10 for (a) the TML and (b) the PLS; ○: ∆T /∆T m; ∗: θ ′/θ ′cθ ;◻: u1θ/(u′1θ ′) and ◇: u2θ/(u′2θ ′); dash-dot lines represent the centres of the scalar fields; dashed line shows the
location of measurements (point A) in the PLS; ∆T m = T m−T a, where T m is the maximum mean temperature and
T a is the mean temperature upstream of the heater; in the TML: x2C/M = 0.92; in the PLS: x2C/M = 0.87.

separation distances were 0.66 and 0.60 mm, respectively.
Streamwise scalar derivatives were calculated using Tay-
lor’s approximation. The cold-wire sensors were operated
at a current of 0.15 mA, which was sufficiently low for the
velocity contamination of the cold-wire signals to be negli-
gible. The -20 dB frequency cut-off for new cold-wires was
estimated to be about 6 kHz.The hot- and cold-wire signals
were low pass filtered at 10.4 and 8 kHz, respectively, and
sampled simultaneously at a rate of 22 kHz. 1.1×108 sam-
ples were recorded at each measuring location, divided into
5000 blocks each of which was more than 200 velocity in-
tegral time scales long. Additionally, the cold-wire signals
were filtered digitally using a double-pass, seventh-order,
Butterworth, low-pass filter, with a cutoff adjusted at each
location to the local Kolmogorov frequency.

RESULTS AND DISCUSSION
The turbulence: Time-averaged properties of the flow
near the centres of the two scalar fields and far downstream
of the heating screen (x1/h = 10) are listed in the following
table, in which L is the streamwise integral length scale, λ is
the Taylor microscale and η is the Kolmogorov microscale.

The scalar fields: Figure 2 shows representative trans-
verse profiles of the mean temperature rise ∆T (normal-
ized by the corresponding maximum ∆T m), the tempera-
ture standard deviation θ ′ (normalized by the correspond-
ing value θ ′cθ in the “centre” of the scalar field) and the
turbulent heat flux correlation coefficients for the two scalar
fields. There is an apparent similarity of the two fields in
one respect: the variations of these properties across the
TML resemble those across either of the halves of the PLS,
if symmetry is taken into consideration. The peaks in θ ′
in both cases occurred near an inflection point of the mean
temperature profile, where also the turbulent heat fluxes
acquired maximal magnitudes. Nevertheless, there is also
an important difference between the two scalar fluctuation
fields: in the TML, the temperature fluctuations in the cold
and warm streams were very small and essentially negligi-
ble compared to θ ′cθ ; in contrast, the temperature fluctua-
tions in the PLS centre were significant and only slightly
lower than θ ′cθ . This means that fluid that was heated by the
ribbon persisted only partially mixed at the measurement

U1c = 7.48 ms−1, dU1
dx2
= 31.2 s−1, u′1/U1c = 0.059,

u1u2
u′1u′2 = −0.46, u2

2/u2
1 = 0.43, u2

3/u2
1 = 0.65,

L = 41 mm, λ = 6.8 mm, η = 0.25 mm,

ε = 0.93 m2s−3, Reλ = 194,

TML, centre: ∆T m = 2.00 K, θ ′/∆T m = 0.17,
u1θ
u′1θ ′ = 0.45, u2θ

u′2θ ′ = −0.42,

Lθ /L = 0.55, λθ /λ = 0.60,

ηθ = 0.33 mm, εθ = 0.91 K2s−1,

εθ1/εθ = 0.22, εθ2/εθ = 0.48, εθ3/εθ = 0.30,

PLS, point A: ∆T m = 0.6 K, θ ′/∆T m = 0.14,
u1θ
u′1θ ′ = 0.41, u2θ

u′2θ ′ = −0.38,

Lθ /L = 0.51, λθ /λ = 0.60,

ηθ = 0.33 mm, εθ = 0.052 K2s−1,

εθ1/εθ = 0.20, εθ2/εθ = 0.56, εθ3/εθ = 0.24.

location. Because of this difference, a comparison between
the structures of the two scalar fields is expected to shed
some light into the effect of initial condition. Such a com-
parison will be made in the following between the scalar
properties at approximately the inflection points of the two
mean fields, namely the centre of the TML and point A for
the PLS (figure 2). The time-averaged properties of the tem-
perature fields at these two locations have been included in
the previous table. To explain the results that will be pre-
sented in the following sections, we need to know the ex-
tent of turbulent mixing across each scalar field. Turbulent
transport mixes fluid with different temperatures over trans-
verse distances that are at least equal to twice the transverse
integral length scale of the transverse velocity fluctuation.
The latter scale has been measured to be about 0.6L in USF
(Vanderwel & Tavoularis, 2013), which is approximately
equal to M for the present results. Consequently, one may
infer that fluid can be transported to the centre of the TML
from anywhere within the TML, including its edges with
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Figure 3: PDF of scalar fluctuations at the TML centre
(●) and point A of the PLS (○); solid line represents a
normal distribution; θ∗ = θ/θ ′.
the cold and warm streams. In the case of point A in the
PLS, fluid may be transported from the same side up to, and
possibly beyond the edge of the cold stream, as well as from
a considerable stretch of the other side, and certainly from
the peak mean temperature region.

The scalar PDF: Figure 3 shows that the PDF of the
scalar fluctuations in both fields were sub-Gaussian. In the
TML centre, the PDF extended strictly to about ±2.5θ ′,
which corresponds to the lower and upper temperature
bounds, namely the temperatures of the cold and warm
streams. This PDF has a very small skewness (-0.09) and
a distinctly non-Gaussian flatness of 2.01. At point A of
the PLS, the scalar PDF is almost identical to that in the
TML centre on the cold side, but tends towards the Gaussian
on the warm side. Non-zero values of the PDF were mea-
sured for positive fluctuations exceeding 4θ ′, which is sig-
nificantly larger than the maximum mean temperature rise
and clearly demonstrates the presence of warm fluid origi-
nating in the thermal field of the heated ribbon. This cre-
ates a positive skewness of 0.18 and increases the flatness
to 2.51.

Velocity conditional expectations: As shown in fig-
ure 4, at the centre of the TML, the expectations of the
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Figure 5: PDF of χθ = (φ − φ)/σφ , where φ = loge,
and σφ is its standard deviation, e is the instantaneous
scalar dissipation rate ; symbols as in figure 3; solid
line represents a normal distribution.

velocity components conditioned on the scalar fluctuations
could be approximated by linear sections for ∣θ∗∣ ≤ 1 but
deviated towards larger magnitudes for larger temperature
fluctuations. This indicates that fluid particles that have
very high or low temperatures are transported by particu-
larly strong eddies, which are presumably capable of pene-
trating the local fluid that has average properties. At point
A of the PLS, however, the velocity conditional expecta-
tions deviated measurably from linearity even in their cen-
tral parts (figure 4) and had distinctly different appearances
at their two ends. Towards the cold edge, large tempera-
ture fluctuations were transported by exceptionally strong
eddies. In sharp contrast, towards the warm edge, large
temperature fluctuations were transported by very weak ed-
dies, in conformity with the previous observation that such
fluctuations originated in the wake of the heated ribbon and
therefore clustered near the PLS centre. These results show
that initial conditions for the scalar field affect significantly
the velocity conditional expectations.

PDF of the scalar dissipation rate and the scalar
derivatives: The PDF of the standardized logarithm of
the scalar dissipation rate for the two scalar fields are shown
in figure 5. Except near the averages, both PDF collapsed

Figure 4: Conditional velocity expectations at the centre of the TML (left) and point A of the PLS (right) ; ◻: i = 1;◇: i = 2; the slopes of the solid lines are equal to the corresponding turbulent heat flux correlation coefficients.
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Figure 6: PDF of scalar derivatives at the centre of the TML (left) and point A of the PLS (right) at x1/h = 10; ○:
i = 1; ◇: i = 2; ×: i = 3; solid lines show a normal PDF.

on the Gaussian with the skewnesses and flatnesses be-
ing 0.03 and 3.2 in the TML and 0.04 and 3.1 in the
PLS. This shows that the scalar dissipation rate was ap-
proximately log-normally distributed. The slight deviations
from log-normality are consistent with previous observa-
tions (Eswaran & Pope, 1988; Jayesh & Warhaft, 1992).
The PDF of the three scalar derivatives for the two scalar
fields are presented in figure 6, with the corresponding
skewness S and flatness F values listed in the following ta-
ble. The streamwise derivative skewnesses were significant
and negative, comparable with many results in the litera-
ture that indicate a cliff-ramp scalar structure. The trans-
verse derivative skewnesses were positive, also compatible
with the qualitative model of Tavoularis & Corrsin (1981b),
by which both downward and upward eddies bring sudden
rises of temperature in the positive x2 direction. The span-
wise derivative skewnesses were close to zero, as spanwise
scalar ramps had no preferred orientation. All flatnesses
were large, indicating that all scalar derivatives are highly
intermittent.

ST ML SPLS FT ML FPLS

∂θ/∂x1 -0.94 -0.7 11.1 10.1

∂θ/∂x2 1.56 1.2 11.5 10.4

∂θ/∂x3 0.07 0.1 10.7 9.8

Conditional expectations of the scalar dissipation
rate: The variations of the scalar dissipation rates and
their three parts in the two scalar fields, conditioned on
the scalar value, are shown in figure 7. In both fields, the
scalar dissipation was strongly anisotropic, with the trans-
verse part accounting for roughly half of the total and the
spanwise part being somewhat larger than the streamwise
one. These observations agree qualitatively with results in
the literature (Gonzalez, 2000). The deviations of the con-
ditional expectations from isotropy were lowest for near-
average scalar values and generally increased with increas-
ing fluctuation magnitude (figure 8). Focusing on the TML
results first, one may observe that the conditional scalar
dissipation and all its three parts had similar shapes: over
a wide range around the average scalar value (∣θ∗∣ ≤ 2),

they were ∩-shaped, but, for large scalar fluctuations, they
turned locally ∪-shape. Nevertheless, the streamwise and
transverse parts had very small values at large fluctuations,
whereas the transverse part maintained strong magnitudes
over the entire scalar value range. In summary, despite
the qualitative similarities, the conditional scalar dissipation
rate in the TML could not be approximated by a multiple of
any of its parts. The differences between the behaviours of
the conditional scalar dissipation parts were much stronger
in the PLS, where they were not only quantitative, but also
qualitative. In this case, the streamwise and spanwise parts
were ∩-shape centrally and locally ∪-shape towards their
two edges, like in the TML. On the contrary, the transverse
part was very strongly ∪-shape in the entire scalar range.
The total dissipation shape was affected visibly by the first
two parts in the central range, but at large scalar fluctua-
tions it was dominated by the transverse part. In summary,
in the PLS the use of the streamwise part as a surrogate for
the total scalar dissipation rate would be grossly inappro-
priate. Moreover, the shape of the conditional scalar dis-
sipation rate cannot be consistently associated with sub- or
super-Gaussianity of the scalar PDF.

CONCLUSIONS
Simultaneous hot-wire and cold-wire measurements

have been made in two non-homogeneous scalar fields
in uniformly sheared turbulence. These included a ther-
mal mixing layer, in which scalar fluctuations were es-
sentially the result of local conditions, and the plume of
a line source, in which scalar fluctuations preserved ini-
tial condition effects. All results demonstrate that com-
monly employed simple models of various unknown terms
in the scalar PDF equation would be inappropriate for non-
homogeneous scalar fields, even in homogeneous turbu-
lence. The scalar PDF were distinctly sub-Gaussian, more
prominently so in the thermal mixing layer. The condi-
tional velocity expectations were non- linear functions of
the scalar fluctuations. The scalar dissipation rate was
anisotropic, with the transverse part being much stronger
than the streamwise and spanwise parts. The conditional
transverse scalar dissipation part increased in importance
for large scalar fluctuations. None of the three parts may
act as a surrogate for the total conditional scalar dissipation
rate.
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Figure 7: Conditional expectations of the scalar dissipation rate and its three parts at the centre of the TML (left)
and at point A of the PSL (right); ∗ : (εθ ∣ θ∗)/εθ ; ○: (εθ1 ∣ θ∗) / εθ ; ◻: (εθ2 ∣ θ∗) / εθ ; ◇: (εθ3 ∣ θ∗) / εθ ; the
inset shows details of the streamwise and spanwise parts.

Figure 8: The ratios of conditional dissipation parts over the total at the centre of the TML (left) and at point A of
the PSL (right); ○: (εθ1 ∣ θ∗) / (εθ ∣ θ∗); ◻: (εθ2 ∣ θ∗) / (εθ ∣ θ∗); ◇: (εθ3 ∣ θ∗) / (εθ ∣ θ∗).
REFERENCES
Ching, E. S. C. 1993 Probability densities of turbulent tem-

perature fluctuations. Phys. Rev. Lett. 70, 283286.
Eswaran, V. & Pope, S. B. 1988 Direct numerical simula-

tions of the turbulent mixing of a passive scalar. Phys.
Fluids 31, 506.

Feng, H., Olsen, M. G., Fox, R. O. & Hill, J. C. 2008 Con-
ditional statistics of passive-scalar mixing in a confined
wake flow. Phys. Fluids 20, 077105.

Ferchichi, M. & Tavoularis, S. 2002 Scalar probability den-
sity function and fine structure in uniformly sheared tur-
bulence. J. Fluid Mech. 461, 155–182.

Gonzalez, M. 2000 Study of the anisotropy of a passive
scalar field at the level of dissipation. Phys. Fluids 12,
2302.

Gylfason, A. & Warhaft, Z 2004 On higher order passive
scalar structure functions in grid turbulence. Phys. Fluids
16, 4012–4019.

Jayesh & Warhaft, Z. 1992 Probability distribution, condi-
tional dissipation, and transport of passive temperature
fluctuations in grid-generated turbulence. Phys. Fluids 4,
2292–2307.

Kailasnath, P., Sreenivasan, K. R. & Saylor, J. R. 1993 Con-
ditional scalar dissipation rates in turbulent wakes, jets,
and boundary layers. Phys. Fluids A 5 (12), 3207.

Li, J. D. & Bilger, R. W. 1994 A simple theory of con-

ditional mean velocity in turbulent scalar-mixing layer.
Phys. Fluids 6(2), 605–610.

Mi, J., Antonia, R. A. & Anselmet, F. 1995 Joint statistics
between temperature and its dissipation rate components
in a round jet. Phys. Fluids 7, 1665.

Mydlarski, L. 2003 Mixed velocity–passive scalar statistics
in high-reynolds-number turbulence. J. Fluid Mech. 475,
173–203.

Mydlarski, L. & Warhaft, Z. 1998 Passive scalar statistics in
high-Péclet-number grid turbulence. J. Fluid Mech. 358,
135–175.

Pope, S. 1985 Pdf methods for turbulent reactive flows.
Prog. Energy Combust. Sci 11, 119–192.

Tavoularis, S. & Corrsin, S. 1981a Experiments in nearly
homogeneous turbulent shear flow with a uniform mean
temperature gradient. Part 1. J. Fluid Mech. 104, 311–
347.

Tavoularis, S. & Corrsin, S. 1981b Experiments in nearly
homogeneous turbulent shear flow with a uniform mean
temperature gradient. Part 2. J. Fluid Mech. 104, 349–
367.

Vanderwel, C. & Tavoularis, S. 2013 Private communica-
tion.

Venkataramani, K. S. & Chevray, R. 1978 Statistical
features of heat transfer in grid-generated turbulence:
constant-gradient case. J. Fluid Mech. 86, 513–543.

6


