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ABSTRACT
The analysis of the spectral eddy viscosity is a handy

tool to analyze the performance of LES methods. It reflects
the cumulated effect of numerical discretization and turbu-
lence subgrid-scale model on the spectral energy transfer.
We compute this quantity by filtering and truncating data
from direct numerical simulations of neutrally and stably
stratified homogeneous turbulence. The results are used for
testing of implicit and explicit LES methods. We find in-
dications that for stably stratified turbulence it is necessary
to use different subgrid-scale models for the horizontal and
vertical velocity components.

INTRODUCTION
In large-eddy simulation (LES) the unresolved part of

the turbulent velocity field is modelled by a subgrid-scale
(SGS) model. This SGS turbulence model is supposed to
modify the flow energy balance in the same way as the
small-scale structures of fully resolved turbulence would
do. Most SGS models are based on an eddy viscosity
hypothesis, i. e., the SGS model dissipates turbulence en-
ergy, especially at the smallest resolved scales, but also on
larger scales. Heisenberg (1948) introduced the concept of
modelling nonlinear interactions in turbulence by a scale-
dependent spectral eddy viscosity (SEV). The underlying
theory has later been refined by Kraichnan (1976) and oth-
ers. Although impractical in real-space-based numerical
simulations, the SEV as a function of wavenumber can be
used to verify the correct behaviour of SGS models in a
set-up of homogeneous (but not necessarily isotropic) tur-
bulence.

Algebraic expressions for the SEV have been de-
rived based on the Eddy-Damped Quasi-Normal Marko-
vian (EDQNM) theory (Orszag, 1970) for isotropic turbu-
lence. Furthermore, Domaradzki et al. (1987) computed the
SEV from direct numerical simulations (DNS) with fully re-
solved turbulence by truncating the results in spectral space.
They found some agreement with the theoretical results of
Kraichnan (1976) but also differences due to the finite in-
ertial range in their simulations. Despite these discrepan-
cies, the behaviour of isotropic turbulence is quite well un-
derstood. On the other hand, a corresponding study for

anisotropic turbulence had not yet been carried out.
Semi-analytical expressions for the eddy-viscosity and

eddy-diffusivity spectrum for stratified turbulence are given
by Godeferd & Cambon (1994), Staquet & Godeferd
(1998), and Godeferd & Staquet (2003) in the framework of
the EDQNM approximation. Another form was obtained by
Sukoriansky et al. (2005) through quasi-normal scale elim-
ination (QNSE). These theoretical results show that turbu-
lence anisotropy can significantly affect SGS energy dissi-
pation in flows dominated by stable stratification, solid body
rotation, or shear.

In validating an SGS model for stably stratified flows,
we have generated an extensive database of direct numerical
simulation results for homogeneous stratified turbulence.
The simulations cover a wide range of Froude numbers
from the neutrally stratified to the strongly stratified regime
(Remmler & Hickel, 2013, 2012). We now analyzed these
results with respect to the anisotropic, i. e., direction depen-
dent, SEV. To achieve this, we filtered the DNS results to
coarser resolutions in several steps and computed the SGS
stress necessary to obtain the same large-scale result on the
coarse grid as on the full DNS grid.

In the following section, we will briefly outline the
Boussinesq equations which we are solving, review the con-
cept of spectral eddy viscosity and diffusivity and com-
ment on our flow solver. A short overview of the computa-
tional set-up follows. The results section presents results for
isotropic turbulence in comparison to the work of Kraich-
nan (1976) and Domaradzki et al. (1987) as well as SEV
data in a two-dimensional spectral space for stably strati-
fied homogeneous turbulence. Furthermore, we use these
newly obtained reference data to evaluate the performance
of different existing LES methods. One model follows the
implicit LES paradigm, i. e., discretization scheme and SGS
model are merged. The other models are more traditional
and combine an explicit approximation of the SGS tensor
with a non-dissipative central discretization.

COMPUTATIONAL METHODS
Boussinesq equations

The flows to be investigated are characterized by a sta-
ble background stratification, so density is not constant.
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However, the density differences are small and flow ve-
locities are much smaller than the speed of sound, which
justifies the usage of the Boussinesq approximation. The
non-dimensional Boussinesq equations for a stably strati-
fied fluid in Cartesian coordinates read

∇ ·u = 0 (1a)

∂tu+∇ · (uu) =−∇p− ρ
Fr2

0
ez +

1
Re0

∇2u (1b)

∂tρ +∇ · (ρu) = uez +
1

Pr Re0
∇2ρ (1c)

where velocities are made non-dimensional by U , all spa-
tial coordinates by the length scale L , pressure by U 2, time
by L /U , and density fluctuation ρ = ρ∗−ρ (ρ∗: local ab-
solute density, ρ: background density) by the background
density gradient L |dρ/dz|. The vertical unit vector is ez.
The non-dimensional flow parameters are

Fr0 =
U

NL
, Re0 =

U L

ν
, Pr =

ν
D

(2)

We chose a Prandtl number of Pr = 0.7, corresponding to
typical values in the atmosphere.

The local dissipation rates εk and εp of kinetic energy
Ek = 1

2 uiui and available potential energy Ep = 1
2 ρ2/Fr2

0
can be computed directly from the velocity and density
field:

εk =
1

Re0

(
∂x j ui +∂xi u j

)(
∂x j ui +∂xi u j

)
(3)

εp =
1

Pr Re0 Fr2
0
(∂xi ρ)(∂xi ρ) (4)

With the spatial mean values of kinetic energy 〈Ek〉 and
kinetic energy dissipation 〈εk〉, we define the local Froude
and Reynolds number as well as the buoyancy Reynolds
number R (Brethouwer et al., 2007):

Fr =
Fr0L

U

〈εk〉
〈Ek〉

, Re =
Re0

U L

〈Ek〉2
〈εk〉

, R = ReFr2 (5)

Spectral eddy viscosity
The momentum equation for incompressible homoge-

neous turbulence in spectral space reads

(
∂t +νk2

)
ûi(k) = Fi(k)− ...

ıkqPi j(k)∑
m

û j(m)ûq(k−m),
(6)

where Pi j(k) = δi j− kik j/k2 is the projection tensor onto a
divergence-free velocity field, δi j is the Kronecker symbol,
k2 = |k|2 = kik j is the wave number and Fi contains the
forces on the fluid. The kinetic energy of a single mode k is

e(k) =
1
2

ûi(k)ûi(k)∗, (7)

where the asterisk ∗ denotes the complex conjugate and
summation over repeated indices applies. The temporal
evolution of e(k) is described by

(
∂t +νk2

)
e(k)−ℜ{Fiûi(k)∗}= T (k) = ...

kqPi j(k)ℑ
{

∑
m

ûi(k)∗û j(m)ûq(k−m)

}
.

(8)

If the numerical discretization acts as a perfect low-pass fil-
ter, only wavenumbers |k|< kc are resolved and we can split
the transfer term T (k) into

T (k) = T−(k,kc)+T+(k,kc) ; |k|< kc, (9)

where T−(k,kc) involves only interactions of wavenumbers
|k|< kc and is thus resolved by the numerical grid. The SGS
transfer T+(k,kc) represents all unresolved interactions and
has to be modelled in an LES.

We can model the average SGS transfer by using the
spectral eddy viscosity hypothesis

νt(k,kc) =

〈
T+(k,kc)

〉

k2 〈e(k)〉 . (10)

The average 〈...〉 is taken over time and on thin spherical
shells with radius |k| for isotropic turbulence. For flows
with spectra symmetric about the kz-axis, such as rotating or
stratified turbulence, we average over thin cylindrical shells

with radius |kh|=
√

k2
x + k2

y .
For isotropic turbulence the SEV is generally normal-

ized by the cut-off wavenumber and the kinetic energy at
this wavenumber

ν+
t (k/kc) = νt(k,kc)

√
kc

E(kc)
, (11)

where the integral kinetic energy is E(k) = 4πk2 〈e(k)〉.
This is only a useful definition if the energy spectrum is
known, (e. g. E(k) =CKε2/3k−5/3) at the cut-off wavenum-
ber. Otherwise, it is helpful to use the original formulation
of Kraichnan (1976)

ν∗t (k/kc) = νt(k,kc)ε
−1/3
k k4/3

c . (12)

For isotropic turbulence with an infinite inertial range, ν+
t

and ν∗t are simply related by ν∗t =
√

CKν+
t , where CK is the

Kolmogorov constant. A parametrization for ν+
t (k/kc) in

isotropic turbulence is given by Chollet (1984).
Having a fully resolved simulation of homogeneous

turbulence, we can extract the full transfer term T (k). By
filtering the solution to a coarser test grid, we find the re-
solved term T−(k,kc) for the test grid resolution and we
compute the SGS transfer T+(k,kc) from equation (9).

We can derive an expression for the spectral eddy dif-
fusivity (SED) of any conserved scalar, such as the density.

Dt(k,kc) =

〈
T+

p (k,kc)
〉

k2
〈
ep(k)

〉 , (13)
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where T+
p is the SGS transfer term in the density equation

and

ep(k) =
1
2

ρ̂(k)ρ̂(k)∗ (14)

is the spectral potential energy density. We normalize the
SED by

D∗t (k/kc) = Dt(k,kc)ε
−1/3
k k4/3

c (15)

using the kinetic energy dissipation rate εk as for the SEV.

Flow solver
With our flow solver INCA, the Boussinesq equations

are discretized by a fractional step method on a staggered
Cartesian mesh. The code is parallelized both for shared
and distributed memory systems and it offers different dis-
cretization schemes depending on the application. For time
advancement the explicit third-order Runge-Kutta scheme
of Shu (1988) is used. The time-step is dynamically adapted
to satisfy a Courant-Friedrichs-Lewy condition with CFL≤
1.0.

The spatial discretization is a finite-volume method.
We use a non-dissipative central difference scheme with 4th
order accuracy for the convective terms and 2nd order cen-
tral differences for the diffusive terms and the pressure Pois-
son solver. The Poisson equation for the pressure is solved
at every Runge-Kutta sub step. The Poisson solver employs
fast Fourier-transform in the vertical direction and a Stabi-
lized Bi-Conjugate Gradient (BiCGSTAB) solver van der
Vorst (1992) in the horizontal plane. By the FFT, the three-
dimensional problem is transformed into a set of indepen-
dent two-dimensional problems, which can be solved in par-
allel.

NUMERICAL SET-UP
We simulated homogeneous stratified turbulence in a

triply-periodic box with side-length 2πL and a resolution
of 5123 cells. A fluctuating large scale horizontal volume
force is applied to the fluid that injects a constant forcing
power into the domain. The time- and space-dependent
forcing term reads (Aspden et al., 2008)

F(x, t) =
2

∑
ki,k j=1

ai, j cos(2πkix+ pi, j) · ...

cos(2πk jy+qi, j) .

(16)

The random amplitudes ai, j and phases pi, j and qi, j are re-
computed at every time step. After an initial transient phase,
the turbulence kinetic energy remains at a constant level,
where the forcing power is balanced by molecular dissipa-
tion. A more detailed description of the simulations is pro-
vided by Remmler & Hickel (2013). We sampled the SEV
and SED in time intervals sufficiently large to ensure decor-
related velocity and density fields. To limit computational
costs, we restricted ourselves to 20 samples per simulation.
All figures presented below are averages of these samples.

A list of the simulations can be found in table 1, where
we provide the non-dimensional parameters for each case

# Re Fr R Reλ ηkmax

1 20800 ∞ ∞ 372 0.95

2 23150 0.089 184.0 393 0.97

3 28250 0.025 17.2 434 0.83

4 33480 0.008 2.1 472 0.71

Table 1. List of the presented direct numerical simulations
ordered by the strength of the stable stratification. #1 is
neutrally stratified, #4 is strongly stratified.

Figure 1. Spectral eddy viscosity of neutrally stratified
turbulence at different test grid levels. For comparison the
EDQNM prediction (Kraichnan, 1976)

as well as the Taylor-scale Reynolds number, which can be
estimated from the integral Reynolds number (Pope, 2000,
pg. 200) by

Reλ =

√
20
3

Re. (17)

RESULTS
Neutrally stratified turbulence

For neutrally stratified turbulence we can compare our
results directly to the EDQNM prediction. In figure 1 we
show the results of spherically averaged SEV for five dif-
ferent coarse test grids together with the algebraic law of
Kraichnan. It turns out that in our simulations

- the values of ν+
t are similar to the theoretical ones,

- the plateau-cusp shape of the curve is reproduced.
However,

- the cusp is sharper than in the theoretical curve and its
maximum value increases with the test grid resolution,

- the “plateau” at low wavenumbers is tilted, its level
rises with decreasing test grid resolution and saturates
for the test grid with 643 cells and the coarser grids.

Domaradzki et al. (1987) already observed a lower level of
the SEV at low wavenumbers compared to theory, when
they analyzed DNS of isotropic turbulence at very low
Reynolds number. So the low level plateau is probably due
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to the high cut-off wavenumbers that are close to the dissi-
pative range.

In figure 2 we present the SEV in a two-dimensional
spectral space. Averaging was performed on circles with
constant distance from the vertical axis. The analysis was
done separately for the horizontal and vertical kinetic en-
ergy components. It turns out that, as expected, the hori-
zontal eddy viscosity spectrum νt(Eh) shows an isotropic
distribution. The SEV of the vertical kinetic energy compo-
nent νt(Ev) is not isotropic, which is due to the anisotropic
spectrum of any single direction kinetic energy in a diver-
gence free velocity field.

Stably stratified turbulence
We applied the same analysis to the simulations with

stable stratification, see figure 3. In this case, a third type
of energy has to be considered: available potential energy
and hence the SED Dt(Ep). In the following, it is some-
times helpful to discuss the results not in Cartesian spectral
coordinates but in terms of absolute wavenumber k and the
angle φ , which has the range 0≤ φ ≤ π/2 for the horizontal
and vertical direction.

The SEV of horizontal kinetic energy is still almost
isotropic in case #2 with R = 184. At lower Froude num-
bers the cusp does not appear any more in all directions,
but only at medium angles φ . At the lowest Froude number
investigated, it almost completely vanishes.

For the vertical kinetic energy, there is no visible dif-
ference between the neutral and the weakly stratified case.
With increasing stable stratification, the cusp vanishes and
the plateau level is decreased, being almost zero in the
strongest stratified case.

The SED of available potential energy differs quite
strongly from the SEV described above. In the weakly strat-
ified case, there is a clear plateau-cusp behaviour, but the
plateau level depends on the spectral direction. It strongly
decreases when φ is increased. The cusp level, on the con-
trary, is almost unaffected by the spectral direction. It de-
creases only slightly at φ ≈ π/2. Case #3 (R = 17.2), looks
very similar, just the plateau level is decreased and the drop
of the cusp level at high φ is more pronounced than in the
previous case. For the strongest stratification, the picture
changes significantly. There is a peak at high horizontal
wavenumbers and no plateau region as is the cases before.

Analysis of LES schemes
The reference data obtained from filtering the DNS can

now be used to analyze LES methods. In LES, the effective
SEV and SED are both influenced by the numerical dis-
cretization and the turbulence SGS model. Both interfere
with each other and cannot be judged independently, which
motivates the idea of implicit LES where discretization and
SGS model are fully merged. Since quantitative comparison
of two-dimensional plots as in figures 2 and 3 is difficult, we
show the SEV and SED of different LES methods in figure
4 in a one-dimensional graph that is a cut through the spec-
tral space at φ = π/4 (the “diagonal” modes). As a test case
we selected case #3 with a medium stable stratification. To-
gether with the EDQNM prediction and the DNS reference
result, we show the results of the following methods:

- Adaptive Local Deconvolution Method (ALDM), an
implicit LES method developed by Hickel et al. (2006,
2007) and Remmler & Hickel (2012)

- A conservative 4th order central discretization scheme
without any SGS model (CDS4)

- CDS4 with the standard Smagorinsky model (SSM)
with a model coefficient of Cs = 0.18

- CDS4 with a dynamic Smagorinsky model (DSM)
with averaging in all spatial directions, i. e. just choos-
ing the most suitable model coefficient for the homo-
geneous problem

- CDS4 with a dynamic Smagorinsky model that allows
for spatial variations of the model coefficient (DSM2)

It turns out that none of the tested methods is able to cor-
rectly reproduce all three SEV and SED spectra at the same
time. ALDM does on average a good job, which is re-
markable since the method was optimized to reproduce the
EDQNM curve as close as possible. The averaged DSM
gives good results for horizontal kinetic energy and avail-
able potential energy, but fails for the vertical kinetic en-
ergy. The vertical kinetic energy, on the other hand, is well
predicted by the pure CDS4 discretization without turbu-
lence SGS model. The DSM2 model which allows for local
variations in the model coefficient does not improve the re-
sult over the averaged DSM, but rather makes it worse.

SUMMARY AND CONCLUSIONS
We have computed the spectral eddy viscosity and dif-

fusivity of homogeneous turbulence with and without stable
stratification. This was achieved by filtering fully resolved
DNS results and by computing the additional spectral en-
ergy flux that is necessary to obtain in the coarse-grained
flow field the same total flux as in the fully resolved case.

For neutrally stratified turbulence we found eddy vis-
cosity spectra that are, in general, similar to the EDQNM
prediction of Kraichnan (1976) showing the well known
plateau-cusp behaviour. On the other hand, the results are
not completely independent of the chosen test filter size; es-
pecially the amplitude of the cusp at the cut-off wavenum-
ber is decreased for coarser test grids.

If stable stratification is increased, the SEV and SED
spectra get more and more anisotropic. For the most sta-
ble case investigated the plateau-cusp topology has almost
completely vanished. This illustrates that the characteris-
tics of the flow change significantly, as soon as the buoy-
ancy Reynolds number approaches R ≈ 1. The treatment
of SGS stresses in such cases must generally be different
than in fully turbulent flows with higher values of R.

We used the results from the filtered DNS to test the
implicit SGS model ALDM and a central discretization
scheme with and without Smagorinsky model, either in the
standard or in the dynamic form. We found that ALDM,
despite being calibrated for the SEV from EDQNM theory,
yields acceptable results for all three forms of flow energy.
The dynamic Smagorinsky model does a good job except
for the vertical kinetic energy, which is best matched by the
central discretization without any SGS model. These results
suggest that a potentially better model could be obtained by
applying the dynamic Smagorinsky model only to the hori-
zontal velocity components and leaving the vertical velocity
component unmodified. This will be subject of our future
work.
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Figure 2. 2D spectral eddy viscosity of neutrally stratified horizontally forced turbulence (test grid with 323 cells). Horizontal
(left) and vertical (right) kinetic energy

(a) R = 184, Fr = 0.089 (b) R = 17.2, Fr = 0.025 (c) R = 2.1, Fr = 0.008

Figure 3. Spectral eddy viscosity νt of stably stratified turbulence (test grid with 323 cells) at different Froude numbers
(corresponding to weak, medium and strong stratification). Horizontal (top) and vertical (middle) kinetic energy as well as
potential energy (bottom)
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