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Abstract
The decay of isotropic turbulence generated by grids

was widely studied in the past, and the influence of the
shape of the grid is still not fully understood. In the present
work the effect of multiscale grids have been analyzed with
the aim to investigate the behavior of fluid structures. A
good agreement has been found with the wind tunnel ex-
periment of Veeravalli & Warhaft (1989) and, despite the
different Reynolds number, all the phenomena are well re-
produced by DNS. The turbulence mixing layer is highly
intermittent, suggesting the displacement of flow structures
between the two homogeneous layers. The flow generated
by the grid with the higher mesh ratio is dominated by one
scale, while the flow relative to the grid with the smaller
mesh ratio is controlled by two scales. The presence of a
lengthscale gradient gives rise to the stress 〈uv〉. Flow vi-
sualizations of the vorticity field show that the square struc-
tures immediately behind the grid become circular before
rolling-up, and that these structures survive longer for mul-
tiscale grids. The longitudinal, transverse and cross spectra
show a persisting anisotropy for multiscale grids, permit-
ting to the flow to survive longer with respect to singlescale
grids. Therefore a flow with a high Rλ can be generated.

1 Introduction
A large number of studies of the turbulence generated

by grids have been carried out in the past, both through
wind-tunnel experiments (starting from von Karman (1937)
and Taylor (1935)), and numerical simulation (Djenidi
(2004) and Ertunc et al. (2010)). The flow, in a laboratory,
is generated by inserting a grid in the wind tunnel. The flow
is not isotropic in the region behind the grid, and becomes
isotropic downstream, within a distance function of M. The
flow reaches a statistical stationary steady state, with the tur-
bulent kinetic energy q varying in the downstream direction.
Batchelor & Townsend ((1948a),(1948b)) observed that the
turbulent kinetic energy was decaying with a power law x−m

, with m = 1 in the initial and m = 5/2 in the final period.
The dependence of m on the shape of the grid has not been
fully understood, however it is reasonable to presume that

the value of m is related to the vortical structures generated
by the grid, and it is important to establish how far down-
stream the effects of the initial conditions last. Veeravalli &
Warhaft (1989) (in the following referred to as V&W) inves-
tigated the flow generated by multiscale grids in wind tun-
nels, and Tordella & Iovieno (2006) analysed the effects of
a gradient of integral scale into the initial conditions. In the
past, simulations of isotropic decaying turbulence starting
with velocity components with random phases and energy
spectra peaked at different wave number were performed
(Orlandi & Antonia (2004) among others). The initial con-
ditions in these DNS, having random phases, differ from
those in the real experiments and then the effects of the vor-
tical structures can not be studied. The simulations should
mimic, as much as possible, the conditions obtained in wind
tunnels by inserting grids. Regular square grids are often
used, therefore Djenidi (2006) and Ertunc et al.(2010) could
use the lattice Boltzmann method to reproduce the flow past
biplane grids. Djenidi (2006) was not interested to analyse
the effects of the grid solidity, which on the other hand was
investigated by Ertunc et al.(2010).

The numerical method here used consists on a second
order finite differences scheme with staggered velocities as
described in Orlandi (2000). The solid grid is reproduced
by the version of the immersed boundary technique (IBM)
described by Orlandi & Leonardi (2006). As in the wind
tunnels at the inlet the flow is uniform and the experimen-
tal disturbances are reproduced by a random velocity field
of small amplitude, which is necessary to produce the tur-
bulence. The large scales and hence the energy containing
eddies are generated by the solid grid.

2 Results
2.1 Simulation details

The shape of the grid dictates the velocity distribution
at its exit and it has been checked that if the grid is located
at LG = 2 the velocity profiles at the exit do not change.
The number of points is 1153 in the x direction and 192 in
the y and z directions. The dimensions of the domain are
L1 = 18π and L2 = L3 = 2π . The boudary conditions are
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periodic in the y and z directions and radiative at the outlet
in x. The grids used for the simulation are shown in Fig.1
and the geometric parameters are listed in Tab.1.

a) b) c)

Figure 1. Geometry of the grids a) G4−4, b) G12−4, c)
G32−4. Solid points indicate the position of the wires (see
Sec.2.3)

The mesh of the grid is defined as M = 2π
Na

, where Na

indicates the number of voids in a row, it is equal to M = 2π
4

for the single scale grid G4−4. For the multiscale grids Na
assumes two values. r is the solidity of the grid, defined as
the ratio between the solid volume and the total volume: r =
Vsolid
Vtot

. The flow has been analyzed at two Reynolds number

Re = U1L2
ν = 1500 and Re = 3000. The inlet disturbances

at t = 0 are convected downstream and, at a certain time,
reach the outlet section. Only after this time the fields are
saved to calculate the statistics. Thirty fields are sufficient
to eliminate the streamwise oscillations found by averaging
one field in the homogeneous direction.

2.2 Energy decay
The large differences in the meshes of the grids allow

to have informations on the effect of the initial conditions
on the decay of isotropic turbulence. The decay law is q =
a( X

ML
−X0)

−m. The values for m have been evaluated by a
best fit of the q profiles for x

ML
> 10 and are listed in Tab.1.

The trend of 〈q〉 (Fig.2a) in the anisotropic region
( x

ML
< 5) indicates that the smaller mesh of the grid influ-

ences the distance where the energy starts to decay. The de-
cay is anticipated by reducing the size of the smaller mesh
(G32−4). On the other hand, the presence of two very differ-
ent meshes let the flow survive longer, ensuring a smaller m.
So, despite the anticipated decay for the multiscale grids, at
the end of the domain, the turbulent energy is higher with
respect to the singlescale grid. Comparing the multiscale
grids G12−4 and G32−4 it is evident that the energy is bet-
ter conserved by increasing the mesh ratio. The two multi-
scale grids are fitted with a good approximation by the line
(x/ML)

−1.1. On the other hand the singlescale grid is fitted
by (x/ML)

−2.4, proving that different scales allow the flow
to survive longer. The initial Reynolds number for the sin-
glescale grid leads to a fast decay, typical of the final period
of decay (Batchelor & Townsend (1948b)), while the com-
bination of different meshes in the same grid allows a slower
decay with m ≈ 1, tipical of the initial period of decay
(Batchelor & Townsend (1948a)). The Reynolds number

based on the Taylor microscale, calculated as Reλ =
λg
√

u2
i

ν ,
and plotted in Fig.2b, confirms the last statement. While
Reλ for the single-scale grid decreases, the multiscale grids
allow to generate a flow with a value of Reλ that remains
constant, and even increases.
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Figure 2. a) Turbulent kinetic energy as function of the
non-dimensional distance for G4−4, G12−4 and G32−4 at
Re = 3000 with the relative slope. b) Profiles of Reλ versus
x at Re = 3000.

2.3 Intermittency
One of the aims of the present study is to corroborate

the existence of intermittency in presence of a lengthscale
gradient, observed in the wind tunnel experiments by V&W.
The intermittency was detected by analyzing the statistics
at the interface between the two homogeneous flows, domi-
nated by two different scales. For this reason three wires
have been located respectively in the high-turbulence re-
gion, in the mixing layer and in the low-turbulence region.
In Tab.1 are listed the set-up in the present work and in the
experiment by V&W, and in Tab. 2 are reported the values
of skewness and flatness for the grid G32−4 at Re = 3000.

The statistics of the two velocity components reveal
that the mixing layer is more intermittent than the two
homogeneous layers. The flatness suggests that the dif-
ference between the three layers is more evident for the
v−component. The high intermittency of the mixing layer
was related by V&W to the migration of the vortical struc-
tures from one homogeneous layer to the other. The positive
values of the skewness in this region, demonstrate that the
structures move from the large towards the small scales.

2.4 Variance profiles
Fig.3 and Fig.4 show normalized

〈
u2〉 and

〈
v2〉 pro-

files taken at different downstream location, for the multi-
scale grids. In the figures are also reported the data of V&W
for the 3 : 1 perforated plate and 8.9 : 1 bar grid. To verify
the flow self-similarity, the profiles have been normalized
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Table 1. Flow parameters for the grids. ReMS is the
Reynolds number evaluated with the small mesh as refer-
ence length. (∗: values relative to Re = 3000. ∗∗: evaluated
as the average between the exponent for the large-scale and
that of the small-scale region).

MS : ML r ReMS m

G4−4 1 : 1 0.57 750∗ 2.39∗

G12−4 1 : 3 0.57 250∗ 1.11∗

G32−4 1 : 8 0.57 125∗ 1.09∗

V &Wbars 1 : 3.3 0.32 3505 1.41∗∗

V &Wbars 1 : 8.9 0.29 1744 −
V &Wplate 1 : 3 0.31 4060 1.34∗∗

Table 2. Values of skewness and flatness of the velocity
fluctuations averaged in time for the grid G32−4 at Re =

3000. Wires are located at x = 7.54ML, z = 1.98ML, at
three different position along y: ysmall = 0.48ML, ymixing =

0.94ML, ylarge = 1.60ML as shown in Fig.1.

〈u3〉
〈u2〉3/2

〈u4〉
〈u2〉2

〈v3〉
〈v2〉3/2

〈v4〉
〈v2〉2

ysmall −0.258 3.131 0.229 2.819

ymix 0.682 3.449 0.538 3.849

ylarge 0.267 2.977 −0.088 2.456

and scaled by mapping the small-scale end to zero and the
large-scale end to one. The y-axis is normalized through
y(y) = 1

2 (yu=0.75 + yu=0.25) and δ (y) = yu=0.75 − yu=0.25
(where yu=0.75 is the point where

〈
u2〉 = 0.75, and simi-

larly yu=0.25 is the point where
〈
u2〉= 0.25) leading to ξ =

[y−y(y)]
δ (y) . For the variance U2

C = 1
2 (U

2
max +U2

min) and U2
S =

U2
max−U2

min have been used to obtain f (ξ )= [〈u2〉−U2
C ]

U2
S

. The

same normalization has been used for
〈
v2〉.
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Figure 3. Normalized variance profiles for G12−4 at dif-
ferent distance x at Re = 3000. a)

〈
u2〉 and b)

〈
v2〉. Data

relative to the experiment of V&W for the 3 : 1 perforated-
plate at x = 27.2ML are also reported.
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Figure 4. Normalized variance profiles for G32−4 at dif-
ferent distance x at Re = 3000. a)

〈
u2〉 and b)

〈
v2〉 . Data

relative to the experiment of V&W for the 8.9 : 1 bar grid at
x = 28.9ML are also reported.

The collapse of the profiles is remarkably good for
G32−4, for both

〈
u2〉 and

〈
v2〉, indicating that the flow is

self-similar. The profiles are well fitted by the function
y = tanh(x), with small departures from this curve for

〈
v2〉.

Larger departures are instead present for
〈
u2〉, especially in

the large-scale region. The results agree with those by V&W
who deduced from this behavior that the large scales dom-
inate the flow. In addition they reported that for the 3 : 1
grids large deviations from the fitted curve are present, es-
pecially in the high-turbulence side of the flow. Our results
for G12−4 confirm their observations therefore, differently
from the 8.9 : 1 grid, it can be asserted that two scales dom-
inate the flow of G12−4.

For a better understanding of the downstream evolu-
tion, the profiles of

〈
u2〉 versus y at different distances

from the grid are presented (Fig.5). Close to the grid
(x = 2.03ML) the geometry dictates the shape of the pro-
file. Departing from the grid the flow begins to homogenize.
In correspondence of the smaller meshes, at the distance
x = 4.02ML, the energy for the grid G32−4 is smaller than
that of the G12−4 and G4−4. This happens because the dif-
ference between the scales does not allow the eddies to in-
teract, and the smaller scales sharply decay. After this rapid
energy decay of the small scales, the transport from the
large to the smaller scales allows to the flow at the center to
maintain approximately the same value of

〈
u2〉 reached at

x = 4.02ML. This phenomenon for G12−4 is barely visible
at x = 6.02ML, and at x = 8.02ML. At x = 31.94ML, where
a good condition of homogenization is reached, the value of〈
u2〉 for G32−4 is about 0.01, higher than

〈
u2〉 for G12−4,

that are much higher than
〈
u2〉 for G4−4. Thus the transfer

of energy from the large towards the small-scale leads to a
weaker decay. Only at the high mesh ratio a dependence
from the Reynolds number appears. In fact the grids G4−4
and G12−4 do not present substantial differences in the pro-
files at Re = 1500 and Re = 3000. Instead in the profiles
of G32−4 differences between Re = 1500 and Re = 3000
are evident at x = 8.02ML, especially in the central region,
dominated by the small scales. These differences disappear
once the flow is homogenized.

2.5 Vorticity field visualization
The visualizations of the vorticity field help to explain

the reduction of the energy decay for multiscale grids. Flow
structures can be easily detected by | ω | visualizations in
Fig.6.

High values of vorticity magnitude for the grid G4−4
in correspondence of the edge of the holes (x = 1.27ML) are
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Figure 5. Profiles of variance
〈
u2〉 at different distances

for a) G4−4, b) G12−4 and c) G32−4. Solid lines, Re= 3000.
Dashed lines, Re = 1500.

concentrated in a thin region of square shape. These squares
tend to roll-up to form tube-like structures. This passage oc-
curs through a transformation of the layers of square shape
in circular layers at x = 1.59ML.

The 3D surface contours of the three vorticity com-

a) b)

Figure 6. Contour of | ω | for a quarter of the grid G4−4
with Re = 3000 at a) x = 1.27ML, b) x = 1.59ML.

ponents in Fig.7 show the formation of sheet-like struc-
tures in correspondence of the edges, made of | −→ω2 | and
| −→ω3 | respectively. The vortex-stretching breaks down the
sheets and forms tube-like structures characterized also by
the presence of | −→ω1 |.

Figure 7. Surface contour of | −→ω1 |, | −→ω2 | and | −→ω3 | respec-
tively in red, blue and yellow, for a section of the grid G4−4
with Re = 3000. | −→ωi |= 20.

The analysis of the structures generated by the multi-
scale grid G32−4 is in Fig.8. The contour plot at x = 1.59ML
compared with that relative to the grid G4−4 enlights that
the sheet-like structures generated by the larger meshes,
maintain the squared-form, differently from the G4−4 where
the instability has already produced circles. This implies
that the large eddies hold for a long distance. The large dif-
ference in the dimension of the meshes does not allow the
bigger structures to interact with the smaller ones located
at the center, but the interactions are restricted to the region
characterized by a similar lengthscale. The same argument
is valid for the smaller scales that, as expected, decay faster.
Fig.8 at x = 6.37ML depict isotropy for the smaller scales
and a coherence for the large scale that, at the same time
penetrate towards the center.

2.6 Spectral analysis
To have an idea of the isotropy at small scales the lon-

gitudinal and the transverse one-dimensional spectra should
be compared with those by DNS of forced isotropic tur-
bulence (Jimenez et al.(1993)). The comparison necessi-
tates the Kolmogorov normalization. The rate of dissipa-
tion ε has been calculated by the one-dimensional spec-
tra (ε = 15ν

∫
κ2

i Eiidκi). The Kolmogorov scale η =
(
ε/ν3)1/4, gives the non-dimensional wave number κ∗i =
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a) b)

c) d)

Figure 8. Contour of | ω | for the whole field of the grid
G32−4 with Re = 3000 at a) x = 1.59ML, b) x = 6.37ML, c)
x = 14ML, d) x = 19.1ML

κη , and the one-dimensional dimensionless spectra are
E∗ii = Eii

(
ε/ν5)−1/4.

The sharp energy peaks in the spectra at x = 2.03ML
(Fig.9a) indicate the strong influence of the grid. The en-
ergy, inserted at the wave number proportional to the mesh
of the grid, has not been transferred into the whole range
of wave numbers. In fact a true exponential range is not
formed. Further downstream, at x = 16ML, Fig.9b indicates
a collapse of all the spectra in the exponential range with
those obtained by the Jimenez et al. (1993). This figure in
addition proves that the present DNS is fully resolved.

The spectra allow also to get information about the
isotropy. Approaching isotropy the co-spectra E∗13(k

∗
3) and

E∗21(k
∗
2) tend to overlap. Fig.10a shows that at x = 31.94ML

the isotropy is not achieved for the multiscale grid G32−4.
The anisotropy can be appreciated also by the plots of the
Reynolds stresses 〈uv〉, 〈uw〉 (Fig.10b), where it is evident
that the stress 〈uv〉 for the G32−4 tends to zero smoothly,
and also at x = 31.94ML is not identically zero. The plots
relative to the Reynolds stresses agree once again with the
results of V&W. As they noted, the presence of a mean ve-
locity gradient gives rise to a turbulence mixing-layer, and〈
u2〉 can not be equal to

〈
v2〉. Then 〈uv〉 can not be zero

within the mixing layer.

3 Conclusions
In the present work the decay of multiple scale gen-

erated turbulence has been studied through DNS to have
a better understanding of the effects of the shape of the
grid, assumed similar to those used in the experiments by
Veeravalli & Warhaft (1989). The value of the decay ex-
ponent of the single scale grid (m ≈ 5/2) suggests that the
flow, at Re = 3000, is in the final period of decay where
the spectrum is dominated by the exponential range. The
comparison between simulations with single and multiple
scale grids demonstrated that the latter lead to a reduction
of the decay exponent, approximately m ≈ 1. The decrease
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Figure 9. Profiles of dimensionless one-dimensional lon-
gitudinal spectra in Kolmogorov variable (E∗33(k

∗
3)) for

G4−4, G12−4 and G32−4 at Re = 3000. a) x = 2.03ML, b)
x = 16ML and c) x = 31.94ML.

is accompanied by a higher Reλ that, differently from the
single-scale grid, remains constant and even increases, simi-
lar to the experiments with fractal grids (Seoud & Vassilicos
(2007)). The aim of the present work has been focused on
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Figure 10. a) Kolmogorov spectra E∗31(k
∗
3) and E∗21(k
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for G4−4 and G32−4. b) Mixed Reynolds stress 〈uv〉 and
〈uw〉 versus the distance x, for G4−4, G12−4 and G32−4 at
Re = 3000.

analyzing the space evolution of the structures. The statis-
tics have shown a high intermittency in the mixing layer
when the difference in the meshes is large (G32−4). The
small departures from a best fitting error of the rms, for
the same grid G32−4, have demonstrated that just one scale
governs the flow. The flow visualizations of the fluid struc-
tures, show that multiscale grids let the sheet-like structures
survive longer. Spectra of multiscale grids have indicated
that the energy contained at smaller κ decays less than that
for singlescale. This behaviour suggests that for single-
scale grids, the eddies of comparable dimensions interact
more efficiently, facilitating the energy cascade. This may
suggest that in isotropic turbulence local interactions occur
both in physical and in wave number space. The coexis-
tence of very different scales instead causes the smaller ed-
dies to die suddenly. The large eddies, unable to interact
with the small ones, maintain their coherence longer, dif-

fusing towards the region dominated by the smaller meshes.
This hypothesis can easily explain the intermittency mea-
sured at the interface between the two homogeneous layers,
caused by the movement of fluid structures from the large
scales region towards the small scale region. The fact that
the scales generated by the small mesh die suddenly, letting
the flow being dominated by the large ones only, is corrob-
orated by the cross-stream profiles of the velocity variance.
Multiscale grids generate a flow with high Reλ and a small
decay coefficient. Nevertheless, these characteristics imply
that the flow remains non-homogeneous for a long distance,
as shown by the rms profiles and by the spectra in the expo-
nential range. The good collapse of the spectra in the expo-
nential range demonstrates also the quality of the numerical
method.
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