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ABSTRACT
A long time running direct numerical simulation

(DNS) based on the lattice Boltzmann method is carried out
in grid turbulence with the view to compare spatially av-
eraged statistical properties in planes perpendicular to the
mean flow with their temporal counterparts. The results
show that the two averages become equal a short distance
downstream of the grid. This equality indicates that the
flow has become homogeneous in a plane perpendicular to
the mean flow. This is an important result, since it con-
firms that hot-wire measurements are appropriate for testing
theoretical results based on spatially averaged statistics. It
is equally important in the context of DNSs of grid turbu-
lence, since it justifies the (lateral) spatial averaging using
several realizations, to determine various statistical proper-
ties. Finally, the very good agreement between temporal
and spatial averages validates the comparison between tem-
poral (experiments) and spatial (DNS) statistical properties.

The results are also interesting because, since the flow
is stationary in time and spatially homogeneous in the lat-
eral directions, the equality between the two types of aver-
aging can be seen to provide support for the ergodic hypoth-
esis in grid turbulence in planes perpendicular to the mean
flow.

INTRODUCTION
Only recently, it was shown that direct numerical sim-

ulations of grid turbulence with the actual grid within the
computational domain were possible (e.g. Djenidi, 2006;
Ertunc et al., 2010; Djenidi and Tardu, 2012). This per-
mits carrying out meaningful comparisons between DNS
and experiments, as well as exploring further grid turbu-
lence and testing theoretical results more adequately. While
direct comparisons between DNS and hot-wire data can be
carried out by simply performing single-point time averages
on the numerical signals as for hot-wire data, this would in-
volve running the simulations over relatively long periods
of time. To avoid this, one could perform spatial averaging
on relatively few independent velocity fields. However, this
supposes that spatial and temporal averages are equivalent,

e.g. that the ergodic hypothesis, often used in turbulence, is
valid. According to this hypothesis, if the turbulence is both
statistically stationary in time and homogeneous in space,
then its temporal and spatial statistical properties should be
the same. Galanti & Tsinober (2004) performed a DNS of
turbulence in a cubic domain with periodic conditions over
a long time and showed that temporal and spatial statisti-
cal properties are equal. They argued that this equality sup-
ported the ergodic hypothesis. Although this hypothesis has
been assumed in grid turbulence (Batchelor, 1953, page 16
and 17), it has not yet been tested.

While grid turbulence is statistically stationary in time,
it cannot satisfy ergodicity completely since it decays with
increasing distance behind the grid. However, one may con-
sider the ergodicity in planes perpendicular to the mean flow
direction if the turbulence is spatially homogeneous in these
planes. Grant & Nisbet (1957) studied the issue of the lat-
eral inhomogeneity in grid turbulence made of horizontal
and vertical bars in a biplane configuration. They reported
the presence of lateral inhomogeneity in the turbulence in-
tensity even at x/M as large as 80 (M is the meshlength).
They suggested that for the inhomogeneity to be negligible,
adjacent ”wakes” emanating from the bars should overlap
appreciably. This seems to be supported by Ertunc et al.
(2010) data who used grids with different porosities. The
recent direct numerical simulations of Djenidi and Tardu
(2012) of a grid-generated turbulence, where the grid is
made up of independent flat square elements and a solid-
ity of about 25% (see Figure 1 below) showed that while
the lateral inhomogeneity was high in the region close to
the grid (x/M < 10), it decreases significantly with increas-
ing distance. However, the downstream extent was only
x/M = 15, not long enough for the turbulence to reach
a complete (lateral) homogenous state. It was observed
though that the grid configuration generates a turbulence
which tends to reach lateral homogeneity over a smaller
distance than that for grids made of bars. This may be be-
cause the individual wakes generated by the square blocks
interact more strongly and earlier than those generated by
the vertical and horizontal bars. Corrsin (1963) proposed
at least three criteria that must be satisfied for ensuring ho-
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mogeneity in grid turbulence (grid made of horizontal and
vertical bars): i) large grid porosity, (ii) large L/M (L is
the height/diameter of the wind tunnel), and (iii) measure-
ments should be taken at least 40M downstream of the grid.
While these criteria can be easily satisfied in experiments,
they may be problematic for DNS, in particular the last two,
which may imply the use of a very large computational do-
main. We believe that for the present grid, made of square
flat blocks with a solidity of 25%, the last two criteria can
be relaxed, thus allowing the use of a ”minimal” computa-
tional domain.

Ergodicity is the equality between ensemble and ap-
propriately defined time or space averages obtained from a
single sample. The necessary but not sufficient conditions
for ergodicity are stationarity in time and homogeneity in
space. Strictly speaking, testing ergodicity implies perform-
ing measurements over a very long time in one realization
as well as over an infinite number of realizations. Such a
procedure is obviously impractical. However, as mentioned
earlier, if the system is statistically stationary in time and
homogeneous in space then ergodicity implies that the tem-
poral and spatial statistics are equal. Thus, the main purpose
of the present work is to compare spatially averaged statis-
tics in planes perpendicular to the mean flow with their tem-
poral counterparts. Agreement between these two types of
statistics could be interpreted, albeit indirectly, as provid-
ing, support for the ergodic hypothesis.

NUMERICAL DETAILS
The lattice Bolzmann Method

The direct numerical simulation (DNS) is carried out
using the lattice Boltzmann method (LBM). Rather than
solving the governing fluid equations (Navier-Stokes equa-
tions), the LBM solves the Boltzmann equation on a 3D
lattice (Frisch Hasslacher & Pomeau, 1986). The method
was successfully used to simulate turbulent flows (Djenidi,
2006 and 2008; Burattini et al. 2006). Note that unless oth-
erwise specified all quantities are expressed in lattice units
or made non-dimensional. Details of the LBM implemen-
tation are given in Djenidi (2006).

Computational domain and boundary
conditions The computational uniform Cartesian
mesh consists of 1600 × 240 × 240 mesh points with
∆x = ∆y = ∆z = 1 (x is the longitudinal direction and y
and z the lateral directions). The streamwise size of the
computational domain is twice that of Djenidi & Tardu
(2012). The turbulence-generating grid (placed at the
x-node of 180) is made up of 6× 6 floating flat square
elements in an aligned arrangement (Figure 1). Each
element is represented by 1× 20× 20 mesh points and the
mesh spacing (M) between the centre of two elements is 40
mesh points (i.e. 2D), yielding a grid solidity of 0.25. The
downstream distance extends to x/D = 70 (equivalently
x/M = 35), where the origin of x is the grid plane and
D = 20 mesh points is the block side length.

Periodic conditions are applied in the y- and z-
directions. At the inlet, a uniform velocity (U0 = 0.05, and
V0 = W0 = 0) is imposed, and a convective boundary con-
dition is applied at the outlet. It was observed that the con-
vective condition affected marginally the simulation results
within a distance of less than 1D upstream of the outlet. A
no-slip condition at the grid elements is implemented with a
bounce-back scheme (Succi, 2001). The Reynolds number,

RM , is about 3200. This is a relatively small value, which
allows a reasonably good grid resolution which varies from
about 2.9η at x/D = 8 to 0.78η at x/D = 68; η is the Kol-
mogorov length scale. The steady state solution is obtained
after 30,000 iterations. The first velocity field is saved af-
ter 105 iterations. Subsequently, 100 velocity fields are
recorded, each separated by about 10,000 iterations (about
8.5 λ/u′, u′ is the velocity fluctuation rms at x/D = 50) to
ensure that consecutive fields are uncorrelated. In order to
avoid the occurrence of instabilities where the magnitude
of the local strain rate could be large, mainly around the
grid, a large eddy simulation (LES) scheme with a filter size
equal to the mesh resolution was introduced (details of this
scheme can be found in Djenidi, 2006).

The Taylor microscale Reynolds number, Rλ , varies
from about 60 at x/D = 8 to about 18 at x/D = 70 (ν is
the kinematic viscosity of the fluid). It should be noted
that Rλ decreases rapidly from a maximum of about 1300
at x/D = 0.5 to 92 at x/D = 5.

Results
Figure 1 shows an example of instantaneous contour of

the enstrophy ω2, the square of the vorticity magnitude, in
the region 55 ≤ x/D ≤ 65; the contour value shown is that
corresponding to 5 < ω2 > (the brackets denote the spatial
average in the volume 55 ≤ x/D ≤ 65, −12 ≤ y/D,z/D ≤
12). The figure reveals that despite the low values of Rλ , the
turbulence field is made of rather elongated vortical struc-
tures, remarkably similar to those observed in the numer-
ical simulation of the 3D periodic box turbulence of Ishi-
hara et al. ( 2007). These authors found that these fine
structures tend to form clusters when the Reynolds num-
ber increases. It is not evident that such clusters occur in
the present flow, although detailled exploration of the field
indicates that there are regions of the domaine where the
density of the structures appears larger than in other parts.
Interestingly, there appears to be no preferred oriention de-
spite the imposed mean flow in the longitudinal direction.
This feature is consistent with the concept of local isotropy.
This characteristic feature of turbulence is further observed
in Figure 2 showing the Laplacien of the pressure field ex-
pressed as:

∇2 p/ρ =
1
2
(ω2− ε/ν), (1)

It is commonly argued that the Poisson equation (Eq.
1) can be used to detect high vorticity regions in a turbulent
field. This is so because the equation reflects a local ex-
cess of enstrophy compared to dissipation. Figure 2 clearly
reveals localised regions where ω2 contribution to ∇2 p/ρ
exceeds that of ε/ν . The topology of these regions is either
structureless flat ”blob” or elongated ellipsoid. Villermaux
et al. (1995) reported that they observed intermitent intense
vortical filements in a stationary turbulence generated by an
oscillating grid in a water tank.

Figures 1 and 2 point to a clear similarity between the
3D periodic box turbulence and the grid-generated turbu-
lence despite the streamwise non-homogeneity in the lat-
ter case. In particular, On can expect that the statistics of
grid turbulence in planes perpendicular to the main flow be
equivalent to that obtained in the 3D periodic turbulence.
Galanti & Tsinober (2004) performed a DNS of turbulence
in a cubic domain with periodic conditions over a long time
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Figure 1. Instantaneous isocontour ω2/ < ω2 >= 5 in the
volume 55≤ x/D≤ 65,−12≤ y/D,z/D≤ 12. The x,y and
z directions are marked by the red, yellow and green vectors,
respectively.

Figure 2. Instantaneous isocontour ∇2 p/ < ∇2 p >= 5
(with ∇2 p = 1

2 ρ(ω2 − ε/ν) in the volume 55 ≤ x/D ≤
60,−12 ≤ y/D,z/D ≤ 12. The x,y and z directions are
marked by the red, yellow and green vectors, respectively.

and showed that temporal and spatial statistical properties
are equal. They argued that this equality supported the er-
godic hypothesis. Although this hypothesis has been as-
sumed in grid turbulence (Batchelor, 1953, page 16 and 17),
it has not yet been tested. In the next section we will address
this issue

Lateral homogeneity
Before comparing the single-point temporal averages

with the spatial averages in planes perpendicular to the
mean flow, one must first verify the spatial homogeneity in
those planes. For this purpose, long time series (about 773
times λ/u′) are recorded at various downstream positions
behind the grid. The first set of signals is taken along the
grid centreline between four adjacent blocks. The second is
taken along a line perpendicular to the centre of a block.

Figure 3 shows the probability density function p(v)
(odf) defined as:

p(v) = pd f (
v− v
σv

), (2)

where the overbar denotes the time average and σv the vari-
ance of v. For convenience, we will denote

v =< v(x)>T=
1
T

∫ t0+T

t0
v(x, t)dt (3)
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Figure 3. Probability density function p(v) at x/D = 8.5
(triangles), 18.5 (stars) 28.5 (circles) and 53.5 (squares) and
y = z = 0 (opened symbols) and y = z = D (filled symbols).
Inset: enlarged region −0.003≤ v≤ 0.003.

where x = (x,y,z) is a fixed spatial position. Notice first
the occurrence of relatively large values of v (about 40% of
the mean velocity U at x/D = 28.5 and 30% at x/D = 53.5)
in the tails of the joint pdfs, which suggests that comput-
ing the ensemble average for directly testing ergodicity re-
quires a very large number of realizations. Close to the
grid (x/D = 8.5), the distributions change with the lateral
position, highlighting the non-homogeneity of the flow in
the near-grid region. For example, notice the flatter shape
of the distribution at y = z = D for −0.01 ≤ v ≤ 0.01. As
x/D increases, the difference in p(v) between the two lateral
locations reduces considerably. At x/D = 18.5, the distri-
butions at the two lateral positions are close to each other,
whereas they are nearly indistinguishable for x/D ≥ 28.5.
These results indicate that the turbulence becomes spatially
homogeneous in the lateral directions at x/D ∼ 20. This is
further reinforced by the (non-normalised) joint probabiliy
density function between u and v, or p(u,v), at x/D = 28.5
for the thw the two lateral positions (Figures 4). The two
distributions are similar and almost perfectly circular.

The lateral homogeneity is further illustrated in Fig-
ure 5 showing the variance of the transverse velocity com-
ponent w, the Taylor microscale, λ (=< u2 >1/2 / <
(∂u/∂x)2 >), and the variance of the second-order veloc-
ity derivative, ∂ 2u/∂x2, (the temporal derivative was con-
veted in to spatial derivative via Taylor’s hypothesis t =Ucx,
where the convective velocity Uc istaken equal t U0). Notice
that there is virtually no difference between the two lateral
positions for x/D≥ 15.

Temporal and spatial statistics
The previous section indicates that the turbulence

downstream of the grid can be considered to be spatially
homogeneous in planes perpendicular to the mean flow for
x/D ≥ 20. Since the turbulence is also statistically station-
ary, we will next test the two types of averages. As stated
earlier, if the ergodic hypothesis in the planes perpendicular
to the mean flow is satisfied then < Q(x)>T=< Q(x, t)>S
where < Q(x, t) >S is the spatial averaging in planes per-
pendicular to the mean flow and defined as:

< Q(x, t)>S=
1
S

∫ ∫

S
Q(x, t)dydz (4)
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Figure 4. Joint pdf of u and v at x/D = 28.5 and y = z = 0
(top) and y = z = D (bottom). The coulourmaps are used
only as guide.

with S representing the plane (y,z) perpendicular to the
mean flow. In Eq. (4), the spatial integration is carried
out over one randomly selected realization (one velocity
field). Figure 5 compares < Q(x) >T with < Q(x, t) >S.
The figure also shows the lateral spatial averaging over 66
realizations. The good correspondance between one and 66
realizations points to the ergodicity nature of the quantities
investigated, despite the inevitable noise associated with the
single realization (due to the finite domain, which limits the
lateral extent of the spatial averaging). Clearly, the square
root of the ”noise” between one realization and converged
statistics goes to zero as the size of the sample is increased.
That is precisely the definition of mean-ergodic processes.
Whether or not all possible measures needed to describe the
turbulence behind a grid are ergodic is of course an entirely
open question.

There is a perfect match in figure 5 between the spa-
tial averages (< . >S) of the various quantities and their
temporal counterparts (< . >T ), demonstrating the equiv-
alence between the two types of averaging. It is not quite
clear why the correspondence between the spatial averaging
for one realization and temporal averaging is better for ve-
locity derivatives than velocity fluctuations. Galanti & Tsi-
nober (2004), who reported similar differences, speculate
that the better agreement between the temporal and (one-
realization) spatial statistics associated with the field of ve-
locity derivatives is the phenomenon of self-amplification
of the velocity field in three-dimensional turbulence, which
is not affected by the large scale motion.

Further illustration of the equivalence between the two
averages is seen in the good agreement between the tem-
poral and spatial pdfs of v (Figure 6; the same is observed
for the other velocity components). The differences seen at
large values of v are due to an insufficient separation be-
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Figure 5. Streamwise variations of temporal (symbols)
and spatial (lines) averages of < w2 >, λ and <

(∂ 2u/∂x2) >. The temporal averages are calculated at two
lateral locations. A linear-log scale is used for < w2 > and
< (∂ 2u/∂x2)>.

tween the integral length scale and the size of the compu-
tational domain. This is more pronounced at x/D = 53.5
than at x/D = 28.5; the integral length scale is larger at
the latter station, while the dimensions of the lateral sides
are kept constant. Galanti and Tsinober (2004) observed
a similar feature in their three-dimensional box turbulence
simulation.

Batchelor (1953) pointed out that it is the objective of
the ergodic theory to show that the spatial average is the
same for all realizations and is identical to the ensemble av-
erage (or probability average) and simply assumed this to
be the case for grid turbulence. Androulakis & Dostoglou
(2004) provided rigorous proofs that in homogeneous flow
not only does the space average exist almost always, but that
it is equal to the ensemble average, if ergodicity is valid.
The brief ergotic theory outlined in the introduction and the
data of figures 5 and 6 suggest that the spatial average in
a plane perpendicular to the mean flow is equal to the en-
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Figure 6. Probability density function p(v) at x/D = 28.5
and 53.5 and y = z = 0. Temporal PDF: symbols; spatial
PDF: lines

semble average, and provide strong support for the ergodic
hypothesis, at least for the variables presented.

CONCLUSIONS
A long time running DNS of grid turbulence, imple-

mented with the lattice Boltzmann method, shows that the
turbulence becomes homogeneous in planes perpendicular
to the mean flow at a relatively short distance downstream
of the grid. For the present geometry, with a grid made
of flat square blocks and a solidity of 25%, this distance
is about 20D (or ∼ 10M). The results also indicate that
temporal and (lateral) spatial statistical properties are equal,
lending strong support for the validity of ergodicity in grid
turbulence in planes perpendicular to the mean flow. This is
an important result since it confirms that hot-wire measure-
ments are appropriate for testing theoretical results based
on spatially averaged statistics. It is equally important for
DNSs of grid turbulence, since it validates carrying out spa-
tial lateral averaging using several realizations, to deter-
mine various statistical properties. Finally, the very good
agreement between the temporal and spatial averages val-
idates the comparison between the temporal (experiments)
and spatial (DNS) statistical properties

A parallel can be drawn with a DNS of turbulent chan-
nel flow, where temporal and spatial statistics in planes par-
allel to the wall are assumed equal. Since comparisons be-
tween DNSs and experiments support this assumption, er-
godicity, without ever being tested or verified, is validated
implicitly because the flow is stationary in time and spa-
tially homogeneous in (x,z) planes (z is the transverse direc-
tion) at fixed positions from the wall. Based on the present
results, one may conjecture that the ergodic hypothesis can
be valid in a turbulent channel flow at fixed positions from
the wall. An obvious extension of this conjecture, is that
ergodicity in a turbulent boundary layer along a line per-
pendicular to the mean flow and parallel to the wall (i.e. at
fixed points from the wall in the transverse direction) can
also be valid. Galanti & Tsinober argued that the ergotic
hypothesis can be expected to be valid along homogeneous
coordinates of nonhomogeneous flows, or that one can at
least expect that temporal and spatial statistical properties
to be equal.

Finally, the results indicate that systematic checks on
the homogeneity of the flow must be carried out before un-
dertaking any statistical analysis for which homogeneity is
required. For example, in the case of grid turbulence, it

is important to determine the distance downstream of the
grid where the flow becomes approximately homogeneous.
Failing to perform such checks may lead, for instance, to an
incorrect estimate of the power law decay n for q ( q ∼ xn,
where q is twice the turbulent kinetic energy) or inadequate
tests for local isotropy since one may inadvertantly include
data within a non-homogeneous region where ergodicity is
not valid.
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