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ABSTRACT
To predict turbulence in porous media, a new ap-

proach is discussed. By double (both volume and Reynolds)
averaging Navier-Stokes equations, there appear two un-
known covariant terms in the momentum equation. They
are namely the dispersive covariance and the volume av-
eraged Reynolds stress which is split into the macro-scale
Reynolds stress and the micro-scale Reynolds stress. To
obtain the Reynolds stresses, two-equation eddy viscosity
models are applied to the volume averaged Reynolds stress
and the micro-scale Reynolds stress whilst the Smagorinsky
model is applied to the dispersive covariance. The presently
proposed multi-scale four-equationk−ε model is evaluated
in porous wall channel flows and porous rib channel flows
with good accuracy.

INTRODUCTION
Flows over permeable porous surfaces are commonly

encountered in environmental and engineering fluid me-
chanics. They play important roles in mass and energy
exchanges across the interfaces. Treating flows inside and
around a highly porous material is thus of primary interest
in designing flow passages of fuel cells, catalytic convert-
ers and heat sinks, etc. Many research studies were hence
historically performed to model and simulate flows inside
and near highly permeable walls. Particularly in turbulent
flow regimes, since the statistical treatment of the momen-
tum equation produces many unknown multi-scale corre-
lations, relatively crude approaches have been applied to
close the equation system. Nakayama & Kuwahara (2008)
and Pedras & de Lemos (2001) developed turbulence mod-
els based on thek− ε two equation eddy viscosity model
significantly dropping and ignoring many unknown corre-
lations which are insignificant in “homogeneous” regions
in porous media.

However, when one considers the interface regions be-
tween the porous wall and the outer fluid regions, such ig-
nored terms become non-negligible. Consequently, more
precise modelling for turbulence in interface regions is
needed for treating flows inside and/or around porous me-
dia (Kuwata & Suga, 2013). To develop a turbulence model
which is relatively simple, but keeps important multi-scale
flow physics, for the flows inside and around porous media,
this study developsfour-equation k− ε turbulence model.

TURBULENCE MODELLING
Double-averaged Navier-Stokes equations

Following Whitaker (1996), the volume averaging pro-
cess in the porous media is applied to the Navier-Stokes
equations. The volume averaged value〈φ〉 is called thesu-
perficialaveraged value while〈φ〉 f is theintrinsic averaged
value of a variableφ . Between them, the relation:〈φ〉 =
ϕ〈φ〉 f , exists with the porosity of the porous mediumϕ .
When the Reynolds averaging is performed to the volume
averaged momentum equation for incompressible flows in
porous media, defining the dispersion:φ̃ = φ −〈φ〉 f , and
the fluctuation of the Reynolds averaging:φ ′ = φ − φ , the
resultant form can be written as
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where the drag termfi consists of the viscous drag and
the form drag and is modelled as the Darcy-Forchheimer

term. The terms ingϕ
i arise due to the inhomogeneity of the

porous media. The unknown covarient terms:〈ũi ũk〉 f and

〈u′
iu

′
k〉

f
, are respectively the dispersive covarianceTik and

the volume averaged Reynolds stressRA
ik. The volume av-

eraged Reynolds stress can be decomposed into the macro-
scale stressRi j and the micro-scale stressr i j :
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In this study, the dispersive covarianceTi j is modelled
by the Smagorinsky model as in Kuwata & Suga (2013),
whereas the two-equation turbulence modelling which
solves the transport equation of turbulence energy and its
dissipation rate is applied to the volume averaged stressRA

i j
and the micro-scale stressr i j . Thus, the macro-scale stress
Ri j is calculated byRi j = RA

i j −r i j . The eddy viscosity mod-

els applied toRA
i j andr i j are

RA
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r i j =
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, (4)

where Si j is the volume averaged strain tensor:Si j =
∂ 〈ui〉 f

∂x j
+

∂ 〈u j 〉 f

∂xi
− 2

3δi j
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∂xk
. The total turbulence energy

kA(= RA
kk/2), its dissipation rateεA, the micro-scale tur-

bulence energykm(= rkk/2) and its dissipation rateεm are
obtained respectively by solving their transport equations.
The coefficientCµ and the damping functionfµ are as in
the Launder-Sharmak− ε model (1974).

Total k and ε transport equations
The transport equation ofkA is
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The termsDν
k ,D t

k,D
p
k ,Pk,εA are the molecular diffusion,

turbulent diffusion, pressure diffusion, mean shear produc-
tion and dissipation rate terms ofkA. The terms by the
”micro-scale” turbulent dispersion are the turbulent disper-
sion transportTdis

k , the hetero-porous termGϕ
k , the mean

dispersive shear productionPd
k , the turbulent shear produc-

tion Pt
k, all which need modelling.

The processes includingDν
k ,D t

k,D
p
k and the turbulent

dispersion transportTdis
k are altogether modelled by the

standard gradient diffusion model as

Dk =
∂
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t
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)
∂kA
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]
, (11)

where the turbulent Prandtl number is set toσA
k = 0.5 .

Since〈ũkũk〉 f = Tkk + rkk, it is assumed that the dissipa-

tion rate of〈ũkũk〉 f is estimated as the sum of the dissipa-
tion rates ofTkk/2 andrkk with the local equilibrium in the
REV. At the limit to the homogeneous flow in the REV, it is
assumed thatPd

k −Pt
k balances with the Reynolds averaged

micro-scale dissipation rate as in Kuwata & Suga (2013):
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k ' εm '
(
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k −Fsvs
k −E

)
, (12)

whereE is the dissipation rate ofTkk. The shear produc-
tion and the drag force production of the sub-volume-scale

stresses:Psvs
k andFsvs

k , are
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, (13)
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, (14)

where 〈û〉 f indicates the relative velocity to the porous
medium. The drag termFkm is modelled as
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)
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whereK andCF are respectively the permeability and the
Forchheimer coefficient of porous media. In the condition
of the homogeneous flow in the REV, the volume averaged
velocity gradient vanishes. As the result, the macro-scale
turbulence energykM is not produced by the macro-scale
gradients. Hence,Psvs

k = 0 andFkm = 0. The resultant form
of the subtraction of the turbulent shear productionPt

k from
the dispersive mean shear productionPd

k is written as
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k '
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)
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)
. (16)

The model coefficient applied isC′
D = 1.1 f2

√ϕ with f2 =

{1− exp[−(ϕRtm/100)3/2]}3/2 andRtm = lm
√

km/ν . The
micro-scale turbulent length scalelm is modelled by using
the mean pore diameterDp of a porous medium and the
normal distance from the edge of the porous layery′ as

lm = min

(
0.1ϕ

y′
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,0.5Dp

)
. (17)

　 The standard gradient diffusion model is applied to the
triple moment inGϕ

k . The modelled form ofGϕ
k is expressed

as
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　 The modelled transport equation for the isotropic part of
the total dissipation ratẽεA = εA −2ν(∂

√
kA/∂xk)

2 is
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(19)

where the standard coefficientsCε1 = 1.44,Cε2 =
1.92, fε2 = 1−0.3exp(−Rt2) are applied. where the turbu-
lent Reynolds number isRA

t = kA2/(νε̃A). The coefficient
C′

ε2 includes the ratio of the total time scale:τA = kA/ε̃A

and the micro time scale based on the mean pore diameter
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Dp andkm: τp = Dp/
√

km, that is,C′
ε2 = 1.92τA/τp. The

termFε is modelled by using the the drag termFkm as

Fε = FkmCε3

(
ε̃m

km
− ε̃M

kM

)
, (20)

where the model coefficient C′
ε3 = 3.8[1 −

exp{−(RA
t /100)2}] is used.

Micro-scale k and ε transport equations
The micro-scale turbulence energykm is obtained by
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The diffusion termsDν
km,D t

km,D p
km andTdis

km are the molec-
ular diffusion, turbulent diffusion, pressure diffusion and
turbulent dispersion transport terms, respectively. The pro-
duction termsPkm,Pd

k are the mean shear production term
and the mean dispersive shear production term which is also
appear in Eq.(9). The energy cascade process is carried out
by the macro-micro turbulence cascade termCt

km and the
drag termFkm .

The diffusion termDkm which includes the turbulent
dispersion transport is modelled by the standard gradient
diffusion model as

Dkm =
∂
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ν +
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t
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k

)
∂km
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]
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where the turbulent Prandtl number isσm
k = 0.5. The sub-

traction of the turbulent shear production from the macro-
micro turbulence cascade is written as
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wherePsvs
k is modelled with the help of Eq.(16) as

Psvs
k ' −CD(E + εm)+C′

D(Fkm+ f k〈ûk〉 f
). (28)

The additional requirement forCt
km−Pt

k is that they should
vanish together when the macroscopic turbulent compo-
nents vanish as indicated by Eq.(10) and (25). Hence, to

Table 1. Parameters of the porous media of Sugaet al.’s
experiments and Breugemet al.’s DNS.

case ϕ K/H2 CF Dp/H

#20 0.82 6.20×10−6 0.17 0.030

#13 0.81 9.93×10−6 0.10 0.048

#06 0.80 2.60×10−5 0.095 0.065

E95 0.95 4.75×10−5 0.292 0.0356

Solid wall

Solid wall

Porous medium

Flow

H

H
/2

x

y

Figure 1. Flow geometry of porous wall channel flows.

ensure it a damping functionf1 is applied to the terms as

Ct
km−Pt

k =
{
−CD(E + εm)+C′

D(Fkm+ f k〈ûk〉 f
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where f1 = 1−exp(−Rt/100) with the turbulent Reynolds
numberRt = k2

M/(νεM). The coefficients applied areCD =
0.2 andC′

D = 0.22
√ϕ. The standard gradient diffusion

model is applied to the triple moment inGϕ
km. The mod-

elled form ofGϕ
km is expressed as
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　 The modelled transport equation for the isotropic part of
the micro-scale dissipation rateε̃m = εm−2ν(∂
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2
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(31)

The model coefficients areC′
ε1 = 1.8τm/τM ,C′′

ε2 =
1.92τm/τp where the micro time-scaleτm is defined as
τm = km/εm.

RESULTS AND DISCUSSIONS
Porous channel flows

The calibration is performed in flows over porous me-
dia (Sugaet al., 2010; Breugemet al., 2006). Fig. 1 il-
lustrates the channel flows whose bottom wall is made of
a porous medium. The channel height isH and the porous
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(a) (b)

(c)

(e)
(f)

(d)

#20 #20

#13

#06
#06

#13

km

km

km

k
A

k
A

k
A

Figure 2. Comparison of velocity and turbulence energy
profiles between the prediction and the experiments: (a) ve-
locities in case #20, (b) turbulence energy in case #20, (c)
velocities in case #13, (d) turbulence energy in case #13, (e)
velocities in case #06, (e) turbulence energy in case #06.

(a) (b)

(c) (d)

Figure 3. Comparison of velocity and turbulence energy
profiles between the prediction and the DNS (case E95):
(a) velocities, (b) turbulence energy, (c) near porous wall
velocities, (d) near porous wall turbulence energy.

region is up to a half of the channel heighty ≤ H/2. The
upper and bottom faces of the channel are solid walls and
the periodical boundary conditions are applied to the inlet
and outlet boundaries. To evaluate the present model, the
results are compared with the experiments of Sugaet al.
(2010) and DNS of Breugemet al. (2006). As shown in Ta-
ble.1, in the experiments, the porosityϕ of the porous media
is almost constant while their permeabilityK changes. The
most permeable case is case #06 and the least permeable
case is case #20 as in Table 1. The bulk Reynolds number
is defined as Re= Ub

H
2 /ν based on the bulk velocityUb of

the clear channel region.
Fig. 2 compares the mean velocity and turbulence en-

Solid wall

Solid wall

Porous media

Flow

H 0
.5

H

x

y

h

h12h 51h

Figure 4. Computational geometry of porous rib channel
flows.
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#06 present

#20 Expt.

#20 present

Figure 5. Comparison of the streamlines with the experi-
ments: (a) case #20, (b) case #06.

ergy profiles of the present model with those of the experi-
ments. The solutions are obtained by an in-house code us-
ing the third-order upwind scheme for convection terms. A
computational mesh of 30(x)×170(y) is used. Turbulence
energy profiles are normalized by the friction velocity on
the top solid walluτ . As shown in Fig. 2, the overall agree-
ment in the mean velocities of the present results and the
data is satisfactory. In the higher permeable case : case
#06, the profiles are very asymmetric and the location of
the maximum mean velocity sifts to the solid wall. It is be-
cause that the turbulence energy is more produced near the
porous wall compared with near the solid wall. This ten-
dency is well captured by the present model. Fig. 3 com-
pares the mean velocity and turbulence energy profiles of
the present model with those of the DNS. Turbulence en-
ergy are normalized by the friction velocity on the porous
wall up

τ . As shown in Fig. 3, the prediction of the mean
velocity profiles in the porous wall well accords with that
of the DNS. Though the peak of the turbulence energy near
porous wall is predicted precisely, the turbulence energy is
overestimated inside the porous wall.

To confirm the advantage of the present model over
an existing model, the results of Nakayama & Kuwahara
(2008) (NK08 model) are also plotted in Fig. 2(c),(d) and
Fig.3. Although the tendency of the mean velocity and tur-
bulence energy profiles are also reproduced by the NK08
model, the turbulence energy near the porous wall is exces-
sively produced compared with the present results.
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     1
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(c) #06

(d)#06

(a)#20

(b)#20 2

k/Ub   ×10
0 2.52

U/Ub

0 1.5

0.75

0.75

k/Ub   ×10
0 2.5A

A

Figure 6. Comparison of the mean velocity and turbulence energy profiles with the experiments: (a) streamwise mean velocity
profiles of case #20, (b) turbulence energy profiles of case #20, (c) streamwise mean velocity profiles of case #06, (d) turbulence
energy profiles of case #06. Solid lines are the present model; broken lines in (a),(b) are the NK08 model; open circles are from
the experiments of Sugaet al. (2013).

y’/h=0.1 y’/h=0.1 y’/h=0.1

y’/h=0.1 y’/h=0.1 y’/h=0.1

(a) (b) (c)

(d) (e) (f)

A
A

Figure 7. Comparison of the near porous wall profiles: (a) turbulence energy profiles of case #20, (b) streamwise mean
velocity profiles of case #20, (c) cross-streamwise mean velocity profiles of case #20, (d) turbulence energy profiles of case
#06, (e) streamwise mean velocity profiles of case #06, (f) cross-streamwise mean velocity profiles of case #06.
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Porous rib channel flows
The next calibration is performed in the porous rib

channel flows shown in Fig. 4. The porous square rib,
which is made of the same porous medium as that of the
porous wall, is mounted on the porous wall in the channel.
The rib height ish= 0.5H. The bulk Reynolds numbers are
Re=Ub

H
2 /ν = 9800 (case #20) and 10600 (case #06). The

computational domain extends from 12h upstream the rib
face and to 51h downstream the rib face as shown in Fig. 4.
The computational mesh is 237(x)× 169(y) which is con-
firmed to be fine enough. Fully developed porous channel
flow profiles are imposed at the inlet boundary, while the out
flow boundary conditions are used at the outlet boundary.
The solutions are obtained by the code using the 3rd-order
upwind scheme for convection terms. For the evaluation of
the present model, the results are compared with the exper-
iments of Sugaet al. (2013).

Fig. 5 compares the streamlines. Due to the flow going
through the porous rib, a recirculating and reattaching zone
is not clearly seen in Fig. 5. As the increase of the perme-
ability (case #20→ case #06), it is clear that the stream-
lines behind the rib tend to be flatter and the stagnation flow
region tends to disappear. To validate the results quantita-
tively, Fig. 6 compares the mean velocity and turbulence
energy profiles. The profiles of the mean velocity and the
turbulence energy generally agree with those of the exper-
iments. It is clear that the flow rate going through the rib
increases at−1 ≤ x/h ≤ 0 as the increase of the perme-
ability ( Fig. 6 (a) and (c) ). This tendency seems to be
well captured by the present model, as the agreement in the
velocity distributions just behind the rib (x/h ≤ 1 ) is rea-
sonable. The turbulence energy of the downstream region
becomes smaller in the higher permeability case as shown
in Fig. 6 (b) and (d). This tendency is also well predicted by
the present model. The difference between the present and
the NK08 model results is seen in the region−1 ≤ x/h ≤ 0
of Fig.6(a) and (b). The turbulence energy by the NK08
model tends to be slightly larger than that of the present
model and the agreement with the experiments is less satis-
factory (Fig.6(b)).

To discuss the prediction performance in detail, the
mean velocity and turbulence energy profiles near the
porous wall are compared with the experiments in Fig.7.
The mean velocity and turbulence energy profiles aty′/H =
0.1 are compared. Here, the normal distance from the
porous wall is denoted asy′. Whilst the agreement of tur-
bulence energy and the cross-streamwise velocity looks sat-
isfactory for the present results, the present streamwise ve-
locity in the upstream region from the rib of case #06 is a
little smaller than the experiments (Fig.7(e)). Also, it is rec-
ognized that the present streamwise velocity in the down-
stream region (x/h ≥ 6 ) of case #20 recovers a little faster
(Fig.7 (b))). One of the reasons of the former is that the
basek− ε model (Launder-Sharma, 1974) does not work
well in the region where such adverse pressure gradients
appear. Although the overall agreement of the turbulence
energy and the cross-streamwise velocity is also seen for
the NK08 model, it doesn’t perform well in the downstream
region (x/h> 4) compared with the present model (Fig.7(a),
(b)).

CONCLUSIONS
To predict turbulence around and inside porous me-

dia, two kinds of covariances: the dispersive covariance and

the volume averaged Reynolds stress which consists of the
macro-scale Reynolds stress and the micro-scale Reynolds
stress are individually modelled in the present study. To
solve the volume averaged Reynolds stress, two-equation
eddy viscosity models are applied to the volume averaged
(total) Reynolds stress and the micro-scale Reynolds stress
whilst the Smagorinsky model is used for the dispersive
covariance. In order to close the total turbulence energy
and its dissipation rate equations, the additional terms: the
turbulent dispersion transport, the turbulent shear produc-
tion, and the hetero-porous terms are modelled. To close
the micro-scale turbulence energy equation, the additional
terms in the transport equation: the turbulent dispersion
transport, the mean dispersive shear production, the macro-
micro turbulence cascade and the hetero-porous terms, are
also modelled. The evaluation of the present model con-
firms that the present method is very promising. The results
of the porous channel flows show that the prediction accu-
racy of the profiles of the mean velocity and the turbulence
energy is satisfactory. The overall agreement between the
present prediction and the experiments is also satisfactory in
the porous rib channel flows, though the present model still
inherits some shortcomings from the original two-equation
eddy viscosity model.
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