
August 28 - 30, 2013 Poitiers, France

P13

VORTEX SHEDDING IN A VARICOSE MODE BEHIND A RISING
BUBBLE
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ABSTRACT
This work presents a computational methodology for

the simulation of three-dimensional, two-phase flows, based
on adaptive strategies for space discretization, as well as a
varying time-step approach. The method is based on the
Front-Tracking Method and the discretization of the Eu-
lerian domain employs a Structured Adaptive Mesh Re-
finement strategy along with an implicit-explicit pressure
correction scheme. Modelling of the Lagrangian interface
was carried out with the GNU Triangulated Surface (GTS)
library, which greatly reduced the difficulties of interface
handling in 3D. The methodology was applied to a series
of rising bubble simulations and validated employing ex-
perimental results and compared to literature. Finally, the
algorithm was applied to the simulation of two cases of
bubbles rising in the wobbling regime. The use of adap-
tive mesh refinement strategies led to physically insightful
results, which otherwise would not be possible in a serial
code with a uniform mesh.

INTRODUCTION
A bubble rising in a quiescent liquid reaches its termi-

nal velocity when the forces acting on it (drag, buoyancy
and weight) are in equilibrium. However, unlike rigid bod-
ies, deformation can take place as a result of the surrounding
flow and, also, the transfer of momentum across the inter-
face may induce vortices inside the bubble. Therefore, the
bubble shape will depend on the viscous forces, interface
forces, and also on the forces from the surrounding flow
(de Vries, 2001).

Rising bubble flows can be described in terms of
three non-dimensional numbers: the Eötvos number, Eo =
g∆ρφ 2/σ , the Morton number, M = g∆ρµ4

c /ρ2
c σ3 and the

Reynolds number, Re = ρcUφ/µc, where g is the gravity
acceleration, ρc is the density of the continuous phase, ∆ρ
is the difference between densities of the continuous and

disperse phases, φ is the equivalent diameter of the bubble,
µc is the dynamic viscosity of the continuous phase, U is the
characteristic bubble velocity and σ is the interface tension
related to the fluid-fluid interface.

Bubbles tend to deform when subjected to external
flow fields until normal and shear stresses balance at the
fluid-fluid interface. Their shape under the action of grav-
ity in an initially quiescent liquid can be grouped into three
large categories: spherical, ellipsoidal and spherical- or
ellipsoidal-cap. If the interfacial tension and/or viscous
forces are much more significant than inertial forces, bub-
bles are termed spherical. Clift et al. (1978) classify a rising
bubble as spherical if its height to width ratio lies within
10% of unity. Ellipsoidal bubbles are oblate with a con-
vex shape when viewed from inside and may present axi-
symmetry. As inertia forces become more important, ellip-
soidal bubbles may undergo periodic dilatation or random
wobbling motion, making shape characterization a difficult
task (Bhaga & Weber, 1981). Large bubbles usually have
flat or indented bases, without fore-and-aft symmetry. Their
fore-shape may resemble segments oblate spheroids of low
eccentricity, thence the names spherical-cap or ellipsoidal-
cap. Bubbles in this regime may also develop thin en-
velopes of dispersed fluid at their bases, usually referred to
as skirts (Brennen, 2005).

In the present work, the motion of a single bubble ris-
ing in an otherwise quiescent liquid was simulated under
two different configurations, both leading to an unsteady
path. The simulations were carried out using a Front-
Tracking Method coupled with a Structured Adaptive Mesh
Refinement for solving the Navier-Stokes equations.

The Front-Tracking (FT) Method of Tryggvason (Un-
verdi & Tryggvason, 1992; Tryggvason et al., 2001) is
based on the One-Fluid Formulation (OFF) and on the Im-
mersed Boundary (IB) Method of Peskin (1977, 2002).

In the OFF approach, the Navier-Stokes equations are
solved as if a single fluid, with space-dependent physical
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properties, were used. The presence of the fluid-fluid inter-
face is modelled using a source term for the interface ten-
sion force, as shown in Eqs. 1 and 2 below.

ρ[
∂u
∂ t

+(u ·∇)u] = ∇ · [µ(∇u+∇uT )]+

−∇p+ρg+ fσ ,

(1)

∇ ·u = 0. (2)

The interface is represented by an unstructured, triangu-
lated Lagrangian surface mesh, on which the interface
force is calculated by integrating the interface tension on
a surface element ∆S, as δFσ =

∫
∆S σκnds, where σ is

the surface tension coefficient, κ is twice the mean curva-
ture for three-dimensional domains and n is the local nor-
mal to the surface. By replacing the geometrical relation
κn = (n×∇)× n (Tryggvason et al., 2011) on this equa-
tion and using the Stokes theorem, the force on a surface
element can be computed without explicitly calculating the
surface curvature, via

δFσ =
∮

δΓ
σ t×ndΓ, (3)

where δΓ is the boundary of the integration element, t is
the unit tangent and n is the outward unit normal, both
computed at the element boundary. Integration of Eq. 3 is
performed using the mesh triangles as integration elements,
following the approach of Shin & Juric (2002), which leads
to the following expression (indices are not related to Ein-
stein notation):

F = ∑
j

σ(t j ×n j), (4)

where F is the vector force acting on a given element, n j
is the outer unit-normal associated to edge j and t j is the
non-normalized tangent vector at edge j.

After being computed on the interface mesh, the force
is spread on the Eulerian referential, as in the IB Method
(Peskin, 2002), in the vicinity of the interface position. The
Navier-Stokes equations can then be solved, yielding the
pressure and velocity fields. Interface advection is per-
formed in a Lagrangian fashion, using the velocity field in-
terpolated from the Eulerian domain onto the mesh surface
vertices.

Interpolation and spreading processes are performed as
described in (Tryggvason et al., 2001), using the following
equation as a Dirac kernel (Peskin, 1977):

W (r) =

{
1
4 (1+ cos( π

2 r)), r < 2,
0, r ≥ 2,

(5)

where r = (x−X)/(hx),(y−Y )/(hy),(z−Z)/(hz).
Physical properties such as viscosity and density are

not literally advected. Instead, the position of the La-
grangian interface, explicitly tracked in time, is used to lo-
cate the constant, but different, material properties defined
in the interior and exterior of the bubble. This is achieved
by means of an indicator function, which yields a scalar

field associated to each flow phase. In the present work,
an approach based on the Closest Point Transform, or CPT,
(Mauch, 2003) was used. Initially, CPT was developed as
a means to create an implicit representation of a surface by
computing its distance field. Ceniceros & Roma (2005) pro-
posed an indicator function based on CPT, in which the dis-
tance computation is limited to an interval [−γ,+γ], where
γ is the absolute value of the largest distance from the inter-
face to a given point in the Eulerian domain. The remain-
ing of the domain is assigned with a constant value (e.g.:
+γ inside the dispersed phase and −γ outside it). The dis-
tance field is not used directly. Instead, a smoothed Heavi-
side function is applied to it, so that the interval [−γ,+γ] is
mapped to [0, 1]. Then, any scalar field ψ can be computed
as ψ(ϕ) = H(ϕ)ψ1 +(1−H(ϕ))ψ2, where the property ψ
has value ψ1 inside the bubble and ψ2 elsewhere.

RESULTS
The numerical method was firstly verified using the

manufactured solutions approach of Roache (1998), and
then validation against experimental results was performed.

In all cases, velocity boundary conditions consisted of
free-slip at the side boundaries, homogeneous Dirichlet at
the bottom boundary, and homogeneous Neumann at the
top boundary. Pressure boundary conditions consisted in
homogeneous Neumann at the side and bottom boundaries,
while homogeneous Dirichlet was used at the top boundary.
Eulerian grid refinements were based on the position of the
Lagrangian interface and on the vorticity strength. The grid
spacing at the finest level was set to be φ/32, where φ was
the diameter of the bubble considered to be spherical at ini-
tial time. Five levels of refinement were used to perform
the discretization of the Eulerian domain whose dimensions
were 8φ × 8φ ×Lz, where L is the height of the domain in
the z-direction, which assumes different values: Lz = 16φ ,
Lz = 24φ and Lz = 80φ .

In the first set of case studies, the ability of the method
for simulating different bubble regimes was investigated
while, in the second set, a series of cases in which the
bubbles had the same Eotvos number (Eo) were consid-
ered to study the influence of the Morton number (M) on
the Reynolds (Re) time distribution. Finally, a wobbling
case study was performed based on the work of Gaudlitz &
Adams (2009).

Terminal bubble shape and Reynolds number
for low Reynolds flows

The ability of the current algorithm for predicting the
terminal bubble shape and Reynolds number was tested
against the experimental work of Bhaga & Weber (1981)
for a series of low Re flows in different regimes.

A comparison with the experimental results showed
that the present algorithm was able to predict the bubble
shape properly. Regarding the terminal Re number, the
maximum error occurred at the creeping flow regime, with
a relative difference ε = 8.62%. In the remaining cases,
the largest errors occurred for bubbles in the skirted regime,
probably due to the decrease in the bubble thickness in the
skirt regions.

The influence of the Morton number on low Reynolds
flows was also studied. As in the previous case, the results
were checked against Bhaga & Weber (1981). The termi-
nal bubble shape again was well predicted and the highest
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Figure 4: Pulsating wobbling. Eo = 3.6, M = 2.5× 10−11. Top: Q-criterion Q = 5000s−2 in green, z-vorticity in
red ωZ =+50s−1 and blue ωZ =−50s−1. Bottom: bubble shape at the respective time instants.

Figure 5: Pulsating wobbling. Eo = 3.6, M = 2.5 × 10−11. Iso surfaces of the z-component of the vorticity.
Red=+50, blue = -50.

downstream of the bubble, another unstable mode can be
identified in the azimuthal direction. These counter rotating
eddies are non linearly induced by azimuthal modes of the
Kelvin-Helmholtz instabilities.

Figure (5) shows unstable modes also inside the bub-
ble, which details are shown in Fig. 6. It can be seen that
these modes are in phase with the modes shown in the lon-
gitudinal, counter-rotating vortices of Fig. (4).
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