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ABSTRACT

This work presents a computational methodology for
the simulation of three-dimensional, two-phase flows, based
on adaptive strategies for space discretization, as well as a
varying time-step approach. The method is based on the
Front-Tracking Method and the discretization of the Eu-
lerian domain employs a Structured Adaptive Mesh Re-
finement strategy along with an implicit-explicit pressure
correction scheme. Modelling of the Lagrangian interface
was carried out with the GNU Triangulated Surface (GTS)
library, which greatly reduced the difficulties of interface
handling in 3D. The methodology was applied to a series
of rising bubble simulations and validated employing ex-
perimental results and compared to literature. Finally, the
algorithm was applied to the simulation of two cases of
bubbles rising in the wobbling regime. The use of adap-
tive mesh refinement strategies led to physically insightful
results, which otherwise would not be possible in a serial
code with a uniform mesh.

INTRODUCTION

A bubble rising in a quiescent liquid reaches its termi-
nal velocity when the forces acting on it (drag, buoyancy
and weight) are in equilibrium. However, unlike rigid bod-
ies, deformation can take place as a result of the surrounding
flow and, also, the transfer of momentum across the inter-
face may induce vortices inside the bubble. Therefore, the
bubble shape will depend on the viscous forces, interface
forces, and also on the forces from the surrounding flow
(de Vries, 2001).

Rising bubble flows can be described in terms of
three non-dimensional numbers: the Edtvos number, Eo =
gAp¢? /o, the Morton number, M = gApu? /p2c3 and the
Reynolds number, Re = p. U@ /U, where g is the gravity
acceleration, p. is the density of the continuous phase, Ap
is the difference between densities of the continuous and

disperse phases, ¢ is the equivalent diameter of the bubble,
U 1s the dynamic viscosity of the continuous phase, U is the
characteristic bubble velocity and ¢ is the interface tension
related to the fluid-fluid interface.

Bubbles tend to deform when subjected to external
flow fields until normal and shear stresses balance at the
fluid-fluid interface. Their shape under the action of grav-
ity in an initially quiescent liquid can be grouped into three
large categories: spherical, ellipsoidal and spherical- or
ellipsoidal-cap. If the interfacial tension and/or viscous
forces are much more significant than inertial forces, bub-
bles are termed spherical. Clift et al. (1978) classify arising
bubble as spherical if its height to width ratio lies within
10% of unity. Ellipsoidal bubbles are oblate with a con-
vex shape when viewed from inside and may present axi-
symmetry. As inertia forces become more important, ellip-
soidal bubbles may undergo periodic dilatation or random
wobbling motion, making shape characterization a difficult
task (Bhaga & Weber, 1981). Large bubbles usually have
flat or indented bases, without fore-and-aft symmetry. Their
fore-shape may resemble segments oblate spheroids of low
eccentricity, thence the names spherical-cap or ellipsoidal-
cap. Bubbles in this regime may also develop thin en-
velopes of dispersed fluid at their bases, usually referred to
as skirts (Brennen, 2005).

In the present work, the motion of a single bubble ris-
ing in an otherwise quiescent liquid was simulated under
two different configurations, both leading to an unsteady
path. The simulations were carried out using a Front-
Tracking Method coupled with a Structured Adaptive Mesh
Refinement for solving the Navier-Stokes equations.

The Front-Tracking (FT) Method of Tryggvason (Un-
verdi & Tryggvason, 1992; Tryggvason et al., 2001) is
based on the One-Fluid Formulation (OFF) and on the Im-
mersed Boundary (IB) Method of Peskin (1977, 2002).

In the OFF approach, the Navier-Stokes equations are
solved as if a single fluid, with space-dependent physical
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properties, were used. The presence of the fluid-fluid inter-
face is modelled using a source term for the interface ten-
sion force, as shown in Egs. 1 and 2 below.

du _ T
p[EJr(U'V)“] =V [u(Va+Vu' )]+ o
Vou=0. 2

The interface is represented by an unstructured, triangu-
lated Lagrangian surface mesh, on which the interface
force is calculated by integrating the interface tension on
a surface element AS, as 0Fs = [,goknds, where o is
the surface tension coefficient, kK is twice the mean curva-
ture for three-dimensional domains and n is the local nor-
mal to the surface. By replacing the geometrical relation
kn = (n x V) x n (Tryggvason et al., 2011) on this equa-
tion and using the Stokes theorem, the force on a surface
element can be computed without explicitly calculating the
surface curvature, via

OFs; = 7{ ot x ndrl, 3)
or

where 0T is the boundary of the integration element, t is
the unit tangent and n is the outward unit normal, both
computed at the element boundary. Integration of Eq. 3 is
performed using the mesh triangles as integration elements,
following the approach of Shin & Juric (2002), which leads
to the following expression (indices are not related to Ein-
stein notation):

FZZ(T(thnj)7 (4)

J

where F is the vector force acting on a given element, n;
is the outer unit-normal associated to edge j and t; is the
non-normalized tangent vector at edge j.

After being computed on the interface mesh, the force
is spread on the Eulerian referential, as in the IB Method
(Peskin, 2002), in the vicinity of the interface position. The
Navier-Stokes equations can then be solved, yielding the
pressure and velocity fields. Interface advection is per-
formed in a Lagrangian fashion, using the velocity field in-
terpolated from the Eulerian domain onto the mesh surface
vertices.

Interpolation and spreading processes are performed as
described in (Tryggvason et al., 2001), using the following
equation as a Dirac kernel (Peskin, 1977):

B Y1 +cos(Zr)), r<2,
W(r)= {37 : o2 )
where r = (x = X) /(hx), (v =Y)/(hy), (2= Z) / (hz).

Physical properties such as viscosity and density are
not literally advected. Instead, the position of the La-
grangian interface, explicitly tracked in time, is used to lo-
cate the constant, but different, material properties defined
in the interior and exterior of the bubble. This is achieved
by means of an indicator function, which yields a scalar
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field associated to each flow phase. In the present work,
an approach based on the Closest Point Transform, or CPT,
(Mauch, 2003) was used. Initially, CPT was developed as
a means to create an implicit representation of a surface by
computing its distance field. Ceniceros & Roma (2005) pro-
posed an indicator function based on CPT, in which the dis-
tance computation is limited to an interval [—7, +7], where
7 is the absolute value of the largest distance from the inter-
face to a given point in the Eulerian domain. The remain-
ing of the domain is assigned with a constant value (e.g.:
+7 inside the dispersed phase and —7 outside it). The dis-
tance field is not used directly. Instead, a smoothed Heavi-
side function is applied to it, so that the interval [—y,+7] is
mapped to [0, 1]. Then, any scalar field y can be computed

as y(@) =H (@)1 + (1 —H(@))y>, where the property y
has value y; inside the bubble and y, elsewhere.

RESULTS

The numerical method was firstly verified using the
manufactured solutions approach of Roache (1998), and
then validation against experimental results was performed.

In all cases, velocity boundary conditions consisted of
free-slip at the side boundaries, homogeneous Dirichlet at
the bottom boundary, and homogeneous Neumann at the
top boundary. Pressure boundary conditions consisted in
homogeneous Neumann at the side and bottom boundaries,
while homogeneous Dirichlet was used at the top boundary.
Eulerian grid refinements were based on the position of the
Lagrangian interface and on the vorticity strength. The grid
spacing at the finest level was set to be ¢ /32, where ¢ was
the diameter of the bubble considered to be spherical at ini-
tial time. Five levels of refinement were used to perform
the discretization of the Eulerian domain whose dimensions
were 8¢ x 8¢ x Lz, where L is the height of the domain in
the z-direction, which assumes different values: Lz = 169,
Lz =24¢ and Lz = 80¢.

In the first set of case studies, the ability of the method
for simulating different bubble regimes was investigated
while, in the second set, a series of cases in which the
bubbles had the same Eotvos number (Eo) were consid-
ered to study the influence of the Morton number (M) on
the Reynolds (Re) time distribution. Finally, a wobbling
case study was performed based on the work of Gaudlitz &
Adams (2009).

Terminal bubble shape and Reynolds number
for low Reynolds flows

The ability of the current algorithm for predicting the
terminal bubble shape and Reynolds number was tested
against the experimental work of Bhaga & Weber (1981)
for a series of low Re flows in different regimes.

A comparison with the experimental results showed
that the present algorithm was able to predict the bubble
shape properly. Regarding the terminal Re number, the
maximum error occurred at the creeping flow regime, with
a relative difference € = 8.62%. In the remaining cases,
the largest errors occurred for bubbles in the skirted regime,
probably due to the decrease in the bubble thickness in the
skirt regions.

The influence of the Morton number on low Reynolds
flows was also studied. As in the previous case, the results
were checked against Bhaga & Weber (1981). The termi-
nal bubble shape again was well predicted and the highest



relative error on the prediction of the terminal Re number
occurred for the case with the lowest terminal Reynolds.

Wobbling

Two cases of wobbling bubbles were simulated in order
to assess the ability of the algorithm for dealing with bub-
bles rising in an oscillating path. In the first case, the bubble
was characterized by Eo = 10 and M = 9.78 x 10~ and,
from the Clift diagram (Clift et al., 1978), Re ~ 280. This
case was also simulated by Stene (2010), who developed
a 3D algorithm based on Berger’s SAMR methodology for
the discretization of the Eulerian domain. The Lagrangian
domain, however, followed the approach of Hua & Lou
(2007), requiring two volume-recovery steps per time step.

The following physical parameters were used: ¢ =
0.0034m, 6 = 0.01N /m, pc = 1000kg/m?, tic = 0.0018Pa-
sand g =9.81m/ 52 in the -z-direction. Density and viscos-
ity ratios were set to 100. The Eulerian domain was set to
(8¢ x 8¢ x 809 )m and six levels of refinement were used.

According to Stene (2010), such bubble should rise fol-
lowing a zigzag path, which is characterized by a predom-
inantly two-dimensional oscillating movement. Figure (1),
which shows the centroid path during the simulation, shows
that although the bubble follows a zigzag path at the initial
stages of the flow, a transition to a spiral path takes place,
and the bubble reaches the statistical steady state following
this movement.

Figure 1: Left: Wobbling bubble, Eo = 10 and M =
9.78 x 1078, Centroid path shown in 3D. The zigzag
path can be seen in the beginning of the flow, and then
the transition to spiral. Right: Adaptive mesh refine-
ment based on the vorticity.

This effect is clearly seen in Fig. (2), which shows
the time history of the velocity components at the bub-
ble centroid. In the beginning of the simulation, when
t < 0.2s, the plot clearly shows a zigzag path in the yz-
plane, since the velocity magnitude is much smaller in the
x-direction. However, as time evolves, this velocity com-
ponent increases and, after r = 0.4s, x- and y- compo-
nents reach a comparable magnitude. Simultaneously, the
z-component of the velocity converges to an asymptotically
constant value.

Figure (3) shows the Q-criterion representation of the
bubble wake. An iso-surface with Q = 500052 is visual-
ized. Hairpin unstable helicoidal eddies can be seen down-
stream of the bubble, as it rises in the z-direction. These ed-
dies, which are responsible for the transition to turbulence,
are similar to those found in flows over a rigid sphere.
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Figure 2: Wobbling bubble, Eo = 10 and M = 9.78 x
1078, Velocity profile of the bubble centroid.
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Figure 3: Wobbling bubble, Eo = 10 and M = 9.78 x
1078, Time evolution of vortex shedding. Iso-surface
shows Q = 500052,

An example of the adaptive grid can be seen in Fig. (1)
on the right, depicting the three-dimensional distribution of
the finest refinement level following the bubble wake.

Another unstable rising bubble was simulated based on
(Gaudlitz & Adams, 2009), who studied an air bubble ris-
ing in quiescent water. The density ratio used in the refer-
ence paper was Ay, = 774 and the viscosity ratio employed
was Ay = 54. In the present work, the same viscosity ratio
was used, but the density ratio was set to A, = 100. The
following physical parameters were used: ¢ = 0.0034m,
o = 0.01N/m, pc = 1000kg/m?, e = 0.0018Pa - s and
g=19.81m/ 52 in the -z-direction. The Eulerian domain was
set to (8¢ x 8¢ x 80¢)m and six levels of refinement were
used.

Figure (4) shows a temporal snapshot of the flow. An
1so-surface of the Q-criterion depicts the toroidal Kelvin-
Helmholtz instabilities (Q = 4+5000s—2). Two iso surface
of the longitudinal vorticity, wz = 450571, are also shown.
At the lower part of the figure, the respective bubble shape
at each time snapshot is shown.

The pulsating behaviour of the bubble, as illustrated
in this figure, leads to the formation of Kelvin-Helmholtz
instabilities in an axi-symmetric varicose mode (Lesieur,
2008). As these instabilities are relatively transported
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Figure 4: Pulsating wobbling. Eo = 3.6, M = 2.5 x 10~'!. Top: Q-criterion Q = 5000s~2 in green, z-vorticity in
red wz = +50s~! and blue w; = —50s~!. Bottom: bubble shape at the respective time instants.

Figure 5: Pulsating wobbling. Eo = 3.6, M = 2.5 x 107!, Iso surfaces of the z-component of the vorticity.
Red=+50, blue = -50.

downstream of the bubble, another unstable mode can be Figure (5) shows unstable modes also inside the bub-
identified in the azimuthal direction. These counter rotating ble, which details are shown in Fig. 6. It can be seen that
eddies are non linearly induced by azimuthal modes of the these modes are in phase with the modes shown in the lon-
Kelvin-Helmbholtz instabilities. gitudinal, counter-rotating vortices of Fig. (4).
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Figure 6: Pulsating wobbling. Eo = 3.6, M = 2.5 X
107!, Left: Iso-surfaces of the z-component of the
vorticity showing counter-rotating, longitudinal vor-
tices. Right: The velocity vector field at four different
planes, also shown on the left, evidencing the counter-
rotating flow.

A comparative analysis between Figures (4) and (1)
yields an interesting interpretation: notice that the bubble
in Fig. (4) pulses, but it is not inclined with relation to the
z-direction. The bubble in Fig. (1), on the other hand, ro-
tates around the z-axis. As a result, the vortex shedding by
the bubble in Fig. (4) occurs in the varicose mode, which re-
mains stable while the bubble path remains rectilinear. Fig.
(1), on the other hand, depicts a vortex shedding in a sinu-
ous mode, as can be seen in Fig. (3), owing to the oscillating
bubble path. This kind of result is delivered by what is cur-
rently called numerical, or virtual, experimentation. Allied
to the material experimentation, this methodology gradually
leads to a better understanding of nature and, as a conse-
quence, to control and reproduce natural phenomena.

The varicose instabilities highlighted in the present
work are attributed to these pulsations, since they are ex-
tremely difficult to sustain in material experiments as well
in virtual, or computational, experiments. The high level
of physical details captured by the present simulations en-
hances the potential of the AMR methodology implemented
in the computational code of the present work. This kind of
result has a high scientific value for explaining and under-
standing the process of transition to turbulence in the wakes
generated by bubbles in two phase flows.

CONCLUDING REMARKS

A fully adaptive Front-Tracking Method was presented
in the present work, aiming at the simulation of three-
dimensional bubbly flows. The use of an adaptive mesh
refinement strategy for the solution of the Navier-Stokes
equations enabled local detailing of the flow.

The remeshing algorithm applied to the Lagrangian
mesh yielded good results, since it intrinsically preserves
the geometry shape and dimensions, therefore preserving
the volume. However, the non-conservative interpolation
of the velocity field required an additional volume recov-
ery algorithm. Also, cases simulated during the sensitivity
analysis showed the presence of non-physical undulations,
a phenomena also reported by other authors. In this sense,
the TSUR-3D algorithm (Sousa e al., 2004) succeeded on
preventing such phenomena while still preserving the bub-
ble shape.

The density ratio has shown little influence on the rise
of bubbles at low Reynolds numbers. As the Reynolds num-
ber increases, its influence grows and interferes on the bub-
ble path, even preventing the transition to an oscillating path
in the case of wobbling bubbles.

Regarding the low Reynolds simulations, the terminal
bubble shape and Reynolds number were in good agreement
when compared to the experimental references. The errors
shown in cases simulating skirted bubbles can be attributed
to the skirt width at the terminal regime.

The initial bubble shape led to two different behaviours
in low and high Re flows. While in the first case all bubbles
converged to the same terminal shape and Re number, flows
at moderate Re have shown to be very sensitive to the ini-
tial bubble shape, leading to toroidal bubbles as the initial
aspect ratio increased.

Finally, two cases were simulated for bubbles in the
wobbling regime. In the first case, the bubble initially de-
scribed a zigzag path. As time evolved, the bubble path
changed from zigzag to spiral and then achieved a steady
state under this trajectory. In the second case, the bub-
ble ascended describing an almost linear path. The bub-
ble shape oscillated following a pulsation pattern, and the
vortex shedding followed a varicose mode. The instabil-
ities inside the bubble interact non-linearly with the exter-
nal Kelvin-Helmholtz instabilities, creating the longitudinal
counter rotating filaments.
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