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ABSTRACT
Numerical simulation is carried out to study the com-

bined effects of rotation and induced swirl on the fully
developed turbulent pipe flow at Reynolds number Reb =
4900, based on the bulk velocity and the pipe diameter. The
swirl is induced by a body force in the tangential momen-
tum equation, which produces a tangential velocity field in
the near wall region. Results from a single swirl along with
five different strengths of the rotation are considered. The
effects of rotation and swirl on turbulent structures are in-
vestigated in detail. Also instantaneous axial velocity fluc-
tuations are provided to visualize the effects on the turbulent
structures.

Introduction
Turbulent flows of liquids or gases through long

straight pipes occur in a variety of different industrial ap-
plications. Such flows have received considerable atten-
tion throughout the years and are fairly well understood to-
day, although some uncertainties still prevails at very high
Reynolds numbers; see e.g. Hultmark et al. (2012). Under
certain circumstances, however, the streamlines are helical
rather than straight lines and the mean flow becomes two-
componential rather than one-componential. This happens
if a swirling motion arises or if the pipe is subjected to ax-
ial rotation. Swirl may result from a swirl generator or an
upstream elbow, whereas axially rotating pipes are found
in turbo machinery cooling systems. In both cases, a cir-
cumferential component Uθ of the mean velocity vector co-
exists with the axial mean velocity component Uz. The pres-
ence of a circumferential mean velocity component tends to
orient the coherent near-wall structures with the local mean
flow direction. Besides the tilting of the near-wall struc-
tures, the structures may be strengthened or weakened in a
two-componential mean flow.

Fully developed turbulent flow in axially rotating pipes
has been studied experimentally by Murakami & Kikuyama
(1980) and Imao et al. (1996) and by means of large-eddy
simulations (LES) by Eggels & Nieuwstadt (1993) and di-
rect numerical simulations (DNS) by Eggels et al. (1994)

and Orlandi & Fatica (1997). It is observed that rotation
results in drag reduction. Recent DNS studies of swirling
pipe flow by Nygard & Andersson (2010) showed the same
influence of the induced swirl on the axial mean velocity as
axial rotation. However, the presence of swirl turned out
to have less clear-cut effects on the turbulence field. In the
cases with stronger swirl, even drag reduction was reported
whereas weak swirl gave rise to excess drag.

Swirl and axial rotation both give rise to helical stream-
lines and it is therefore not unexpected that similarities be-
tween these two circumstances can be found. The aim of the
present study is to examine how an originally swirling pipe
flow reacts to axial rotation. For a given swirl number, five
different rotation rates (N = −1,−0.5,0,0.5,1) with both
senses of rotation will be studied. To this end, the full
Navier-Stokes equations are solved in three-dimensional
space and in time on a computational mesh sufficiently fine
to resolve the energetic large-eddy structures.

Governing equations
The governing equations are solved in cylindrical co-

ordinates θ , r, and z. For practical reasons, the variables
qθ = ruθ , qr = rur and qz = uz are introduced. Here uθ ,
ur, and uz are velocity components in the respective coor-
dinate directions. All variables in the governing equations
are non-dimensionalized with the centerline velocity of the
Poiseuille profile, Up and the pipe radius, R.

To simplify, the non-dimensionalized total pressure,
ptotal is divided in to three parts as follows:

ptotal = P̂(θ)+ P̄(z)+ p(θ ,r,z, t). (1)

The first part, P̂(θ), is the artificial transverse pressure com-
ponent. In order to introduce a swirl in the pipe flow, the az-
imuthal pressure gradient, dP̂/dθ , is introduced. The sec-
ond part of Eq. (1) is the mean axial pressure, P̄(z) and fi-
nally, p(θ ,r,z, t) represents the remaining part of the total
pressure. The Navier-Stokes equations in terms of the new
variables, in a reference frame rotating with the pipe wall
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where N = 2ΩR/Up is the non-dimensional rotational num-
ber.

The bulk Reynolds number Reb is maintained at 4900
by enforcing a constant bulk velocity Ub in the axial di-
rection, which in turn is sustained by the average pressure
gradient dP/dz, found in the axial momentum equation (4).
The imposed non-dimensionalized azimuthal pressure gra-
dient, dP̂/dθ is designed to be constant and non-zero for
r > 0.9R and zero otherwise, as indicated by the shaded
area in Fig. 1.

R

0.9R

Figure 1. Cross-section of the circular pipe. The shaded
annular region indicates the region where the azimuthal
pressure gradient is imposed.

Numerical Method and Grid Configuration
The discretization of the momentum equations is gen-

eralized as in Orlandi & Fatica (1997) and Nygard & An-
dersson (2010)

(1−αl∆tAiθ )(1−αl∆tAir)(1−αl∆tAiz)∆q̂i

= ∆t[γlH
n
i +ρlH

n−1
i −αlΨi pn]+∆t[2αl(Aiθ +Air +Aiz)qn

i ]

(5)

where i = 1,2,3 and represent the θ , r, and z directions.
∆q̂i = q̂i − qn

i and q̂ is an intermediate velocity field. qn
i is

the velocity field at the old time step, n. Hi contains the
discretized convective terms. Ψi pn and Aiθ ,Air,Aiz repre-
sent the discretized pressure gradients and the discretized
second-order derivatives, respectively. αl ,γl and ρl are the
coefficients from the time advancement scheme. The ap-
proximate factorization technique is adopted to reduce the
term in front of ∆q̂i to tri-diagonal matrices. The discretiza-
tions are forward in time and central in space. Here q̂ is
non-divergence free and is found by the use of a third-order
hybrid Runge-Kutta/Crank-Nicolson method. An explicit
third-order low storage Runge-Kutta method is used for the
nonlinear terms and the linear terms are solved by an im-
plicit Crank-Nicolson scheme. The method is second-order
and third-order accurate in time for nonlinear and linear
terms, respectively.

The DNS code is based on staggered grid. Accord-
ingly the computational domain splits up into cells with the
velocities calculated at the cell faces and the pressure cal-
culated at the cell centers. All the cells are enclosed by six
sides (see Fig. 2) except for the cells adjacent to the cen-
terline. The grid is described by N1 × N2 × N3 where N1,
N2 and N3 represent the number of grid points in θ , r and
z directions, respectively. The grid is uniform along the az-
imuthal and axial directions and is non-uniform along the
radial direction. Since, the fine grid requires much larger
CPU-time and storage requirements, the present DNS sim-
ulation with induced swirl and pipe rotation has been carried
out for 65×97×65 grid points with Lz = 10D.
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Figure 2. Computational cell: (a) next to the centerline
and (b) all elsewhere.

1 Results and Discussions
Results from five cases with different values of rota-

tion number N and swirl strength d p̂/dθ = 0.0250 are com-
puted and are compared with the results from the DNS sim-
ulations by Nygard & Andersson (2008), without rotation,
with d p̂/dθ = 0.0250 and grid size of 64 × 96 × 64 (see
Table 1). In Fig. 3, mean axial velocity profiles are plotted
for the current simulations. The profile corresponding to
N = 0 has evidently moved towards the laminar Poiseuille
profile. Fig. 4 shows the simultaneous effects of swirl and
rotation on the mean azimuthal velocity. It is clear that the
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amplitude of the normalized mean circumferential velocity
is maximum for high value of opposite (N = −1.0) rotation.

Table 1. Simulation results with N = 0 and dP̂
dθ = 0.0250

Present Nygard & Andersson (2008)
Rec = UcD/ν 7316 7320
Reτ = uτ D/ν 324 327

Uc/uτ 22.35 22.39
Ub/uτ 14.95 14.98
Uc/Ub 1.45 1.49
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Figure 3. Mean axial velocity profiles.
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Figure 4. Mean circumferental velocity pro-
files.

Sweeps and ejections are the primary sources of the
Reynolds shear stress ⟨u′

ru′
z⟩, shown in Fig. 5 and are re-

sponsible for the production of axial normal stress. The
only non-negligible stress in a non-rotating pipe is ⟨u′

ru′
z⟩.

When the pipe rotates, this stress is reduced and the other
two stresses ⟨u′

ru′
θ ⟩ and ⟨u′

θ u′
z⟩ increase. Fig. 5 shows

the profile for ⟨u′
ru′

z⟩ attains highest peak corresponding
to N = 1 and dP̂/dθ = 0.0250, and gets decreased as the
rotation number tends to zero. The magnitude of the rz-
component corresponding to the opposite (N < 0) rotation
always remain less than that of corresponding to N > 0.
This Reynolds shear stress component is a measure of the
turbulent drag. It is evident that maximum drag reduction
corresponds to N = −0.5 and dP̂/dθ = 0.0250. Fig. 6
shows in the core region of the flow, the behaviour of the
flow of ⟨u′

ru′
θ ⟩ is almost linear. The ⟨u′

θ u′
z⟩-profiles are

shown in Fig. 7 and also here, pronounced effects in the
near-wall region can be observed. The increase of the
⟨u′

ru′
θ ⟩ and ⟨u′

θ u′
z⟩ components in the near-wall region is

due to the large magnitude of the mean velocity gradient
dUθ /dr. Surprisingly, in presence of swirl, ⟨u′

θ u′
z⟩ attains

highest peak value for no-rotation (N = 0), as is clear from
Fig. 7.
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Figure 5. Reynolds shear stress profile for
⟨u′

ru′
z⟩-component.

Visualization
Controlling the coherent structures seems important in

taming the turbulence. In accordance with this, visual-
ization plots of instantaneous axial velocity fluctuations in
θ − z plane are given in Figs. 8 to 12 for all the five cases,
considered in this work. In these figures red and blue colors
visualize positive and negative fluctuations respectively. It
is clear that the presence of swirl creates a velocity field that
tilts the streaks. On the other hand as the rotation number
changes sign from negative to positive, the distance between
the streaks increases. A reduction (increase) in the length of
streaky structures due to negative (positive) fluctuations is
observed as the rotation number, N changes sign from neg-
ative to positive (compare Figs. 9 and 11).
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Figure 6. Reynolds shear stress profile for
⟨u′

ru′
θ ⟩-component.
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Figure 7. Reynolds shear stress profile for
⟨u′

θ u′
z⟩-component.

Figure 8. Visualisation of axial velocity fluctuations
u′

z/Up, at y/R = 0.1 for N = −1.0 and dP̂/dθ = 0.0250.

Conclusions
The work is devoted to the numerical simulation of a

turbulent pipe flow with rotation and swirl induced by near-
wall body force. The flow is three-dimensional. The nu-
merical method is tested for the non-rotating case (N = 0)
by comparing the results with Nygard & Andersson (2008).
In presence of swirl, maximum drag reduction is achieved
for N = −0.5. It has been taken in to consideration that

Figure 9. Visualisation of axial velocity fluctuations
u′

z/Up, at y/R = 0.1 for N = −0.5 and dP̂/dθ = 0.0250.

Figure 10. Visualisation of axial velocity fluctuations
u′

z/Up, at y/R = 0.1 for N = 0 and dP̂/dθ = 0.0250.

Figure 11. Visualisation of axial velocity fluctuations
u′

z/Up, at y/R = 0.1 for N = 0.5 and dP̂/dθ = 0.0250.

Figure 12. Visualisation of axial velocity fluctuations
u′

z/Up, at y/R = 0.1 for N = 1.0 and dP̂/dθ = 0.0250.

the simulation has been done with a relative coarse grid,
which have an uncertain influence on the present results.
Therefore, simulations with improved grid resolutions will
be carried out in future work.
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