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ABSTRACT
We present simulation results of a stochastic Navier-

Stokes model that incorporates uncertainty on the fluid
parcels location. This model ensues from a decomposition
of the flow in terms of a differentiable drift component and a
time uncorrelated uncertainty random term. The dynamics
associated to the drift component, derived from a stochas-
tic version of the Reynolds transport theorem, includes in
its general form an uncertainty dependent anisotropic diffu-
sion that cannot be immediately related to usual eddy vis-
cosity assumption. The simulation we present relies on a
wavelet numerical scheme and is here experimented on a
Green-Taylor vortex.

Introduction
The large scale analysis of complex fluid flows in do-

mains ranging from climate sciences to engineering re-
quires to constitute flow dynamics models that incorporate
properly missing contributions. This includes for instance
physical phenomenon such as unknown small scale forc-
ing or boundary layers influence, but also partially known
inlet or boundary conditions, and numerical errors arising
from truncation policy and scale coarsening procedures. An
accurate deterministic modeling of the effects of these un-
known terms is obviously hardly achievable and we advo-
cate instead the use of a stochastic modeling. Within this
prospect, we aim at describing these missing terms as ran-
dom variables referred to as in the following as flow dy-
namics uncertainties. The modeling of such uncertainties
but also of their evolution is of the utmost importance for
data assimilation purposes to analyze accurately past situa-
tions from data or for the forecast of a plausible ensemble
of realizations. Such a modeling is usually set up through
the adjunction of random forcing terms to standard expres-
sions of Navier-Stokes equations (Bensoussan & Temam,
1973; Flandoli, 2008). We explore here a somewhat dif-
ferent strategy. Instead of considering a given – eventu-
ally simplified – dynamics and then to supplement it with
random forcing terms, we start from a general Lagrangian
formulation of the fluid motion. The sought Eulerian dy-
namics is then deduced from this general stochastic velocity

description and standard physical principles or approxima-
tions. This construction, reminiscent to the framework pro-
posed by Mikulevicius & Rozovskii (2004), has the great
advantage to let naturally emerge deterministic and stochas-
tic uncertainty terms related to the different errors trans-
ported by the evolution model.

In order to achieve this aim, we will assume throughout
this study that the particles displacement can be separated
in two components: a smooth differentiable function and an
uncertainty function uncorrelated in time but correlated in
space. The whole displacement is defined as an Ito diffusion
of the form:

dXXX(xxx, t) = www(XXX(xxx, t), t)dt +σσσ(XXX(xxx, t), t)dB̃BBt , (1)

where XXX represents the trajectory followed by a fluid par-
ticle starting at point XXX |t=0(xxx) = xxx of the domain Ω. This
constitutes a Lagrangian representation of the fluid flow and
dXXX(xxx, t) figures the Lagrangian displacement map at time
t. In this expression, www = (w1,w2,w3), corresponds to the
smooth resolved velocity component of the flow. It is as-
sumed to be a deterministic differentiable function (of even-
tually random arguments). The combination of these veloc-
ity fields provides an Eulerian description of the complete
velocity fields driving the particles:

UUU(xxx, t) = www(xxx, t)dt +σσσ(xxx, t)dB̃BBt . (2)

This random field UUU(xxx, t), which should follow a stochastic
linear momentum conservation principle, involves unknown
characteristics, σσσ , and, www, that have to be determined or
specified. More precisely, in a similar way to Large Eddies
Simulation or to Reynolds Average Numerical Simulation
models (see the textbook Sagaut, 2005, for an extended re-
view), we will first derive the resolved drift dynamics con-
sidering a given specification of the uncertainty. This dy-
namics is derived from a stochastic version of the Reynolds
transport theorem relying on a specific model of a tempered
Brownian motion fields.
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Random unresolved uncertainty model
This random field, B̃BBt , is built from a finite dimensional

discrete set of standard Brownian variables as

B̃BBn
t (xxx) =

1√
n

n

∑
i=1

BBBt(xxxi)ϕν (xxx− xxxi), (3)

where BBBt = {BBBt(xxxi), i = 1, . . . ,n} is a set of independent
d-dimensional (with d = 2 or 3) standard Brownian mo-
tions centered on the points of a discrete grid S = {xxxi, i =
1, . . . ,n} ⊂ Ω and ϕ is a Gaussian function. It is im-
mediate to check that B̃BBn

t is a zero mean Gaussian pro-
cess with uncorrelated increments, which tends in law to
a zero mean continuous process with a limiting covariance
Q = tϕ√2ν (xxx− yyy)Id . This limiting process will be denoted
in a formal way through a convolution product B̃BBt = BBBt ?ϕν .
The covariance operator, Q, is positive definite and of finite
trace for non zero Gaussian smoothing standard deviation:

E|B̃BB|22 =
td
n ∑

i

∫
ϕ2

ν (xxx− xxxi)dxxx = td(4πν2)−d/2. (4)

Hence, the energy of the uncertainty term does not depend
on the number of grid points used for its construction but
only on the Gaussian smoothing standard deviation. The
analog of the white noise on the bounded domain Ω is sim-
ilarly defined from the generalized function dB̃BBt = dBBBt ?ϕν
and, σσσ t , a linear bounded deterministic symmetric opera-
tor with null value outside the domain interior. The random
oscillating component is denoted:

σσσ(xxx, t)dB̃BBt =
∫

σσσ t(xxx,yyy)dB̃BBt(yyy)dyyy.

Let us remark that divergence free random field necessitates
a divergence free tensor.

Toys models pioneered by Kraichnan (1968) and
intensively explored for passive scalar turbulence study
(Gawedzky & Kupiainen, 1995; Kraichnan, 1968; Majda &
Kramer, 1999) can be easily specified with such a model.
The Kraichnan model is formally defined from a divergence
free projector P as:

dξξξ ζ
t = P?ψ ? f ζ ?dBBBt ,

and involves a power law function f ζ (xxx) = C‖xxx‖ζ/2 with
exponent 0 < ζ < 2 and a band-pass cut-off function, ψ ,
covering the inertial range defined between the short dissi-
pative scale `D and the large integral scale L at which the
forcing takes place. The variance (or time derivative of the
quadratic variation process) of this isotropic random field is
constant and diagonal (Q(0) ∝ (ζ−1(L− `D))δ i j). We will
see that such a random field leads to an intuitive eddy vis-
cosity term defined from the noise variance. However more
general random fields will let rise an anisotropic diffusion
term that cannot be immediately related to the usual eddy
viscosity assumption first formulated by Boussinesq (1877)
and that remains intensively used in the Large Eddies Simu-
lation paradigm since the work of Smagorinsky (1963) and
Lilly (1966).

Stochastic Reynolds transport theorem
In a similar way as in the deterministic case, our

derivation relies essentially on a stochastic version of the
Reynolds transport theorem, which states the rate of change
of a scalar function, q, within a material fluid volume V (t)
transported by (1):

d
∫

V (t)
q(xxx, t)dxxx =

∫

V (t)
{dqt +[∇∇∇ · (qwww)+

1
2
‖∇∇∇ ·σσσ‖2q

−∑
i, j

1
2

∂ 2

∂xi∂x j
(ai jq)|∇∇∇·σσσ=0

]dt +∇∇∇ · (qσσσdB̃BBt)}dxxx. (5)

In this expression the first term is a time difference at fixed
coordinates, xxx, and the third term must be computed con-
sidering the diffusion tensor is divergence free. The tensor
a(xxx) is the uncertainty variance. It is defined as:

ai j(xxx, t) = ∑
k

σ ik
ν (xxx, t)σ k j

ν (xxx, t), (6)

where σσσν (xxx,yyy, t) = σσσ(xxx,•, t)?ϕν (yyy) denotes a filtered ver-
sion of the diffusion tensor along its second component.
This rate of change is obtained from the Ito-Wentzell dif-
ferentiation of a function tending to the material volume
characteristic function and through an integration by part
(Mémin, 2013). This relation allows us stating a mass con-
servation principle that accounts for an uncertainty on the
fluid particles location. Applying the previous transport the-
orem to the fluid density ρ(xxx, t) and canceling this expres-
sion for arbitrary volumes, we get a general mass conserva-
tion constraint:

dρt +∇∇∇ · (ρwww)dt =
1
2
(∑

i, j

∂ 2

∂xi∂x j
(ai jρ)|∇∇∇·σσσ=0

− 1
2
‖∇∇∇ ·σσσ‖2ρ)dt−∇∇∇ · (ρσσσdB̃BBt). (7)

For an incompressible fluid with constant density, can-
celing separately the slow deterministic terms and the rapid
oscillating stochastic terms, and imposing to the whole de-
formation field (2) to be volume preserving, this system
simplifies in a set of incompressibility relations:

∇∇∇ · (σσσdB̃BBt) = 0, ∇∇∇ ·www = 0, ∇∇∇ · (∇∇∇ ·a) = 0, (8)

composed of two standard volume preserving constraints
accompanied with a less intuitive additional constraint on
the quadratic variation tensor. For the Kraichnan model (or
for any divergence free homogeneous random fields) this
last constraint is naturally satisfied as its quadratic variation
is constant. The system reduces hence to the standard in-
compressibility constraint.

For isochoric flow with varying density we get a mass
conservation constraint of the form:

dρt +∇∇∇ρwwwdt− 1
2 ∑

i, j

∂ 2

∂xix j
(ρai j)dt = ∇∇∇ρσdB̃BBt . (9)
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In the case of the Kraichnan model the density variation
involves a Laplacian diffusion and for a mean field dynam-
ics (i.e. when www = EdXt ) the density expectation evolution
comes to an intuitive advection diffusion equation. Let us
note that the same kind of deterministic advection equation
with anisotropic diffusion is also obtained if the noise lies in
the tangent plane of isodensity surfaces. This type of diffu-
sion is considered in geophysics to encode large scale mix-
ing of stratified fluids. They are called isopycnal or isoneu-
tral diffusion in this context (Gent & McWilliams, 1990).

Linear momentum conservation
The mass conservation constraint and the stochastic

version of the Reynolds theorem allows us expressing the
balance between the momentum and the forces:

d
∫

V (t)
ρ(www(xxx, t)dt +σσσ(xxx, t)dB̃BBt)dxxx =

∫

V (t)
FFF(xxx, t)dxxx.

The acceleration is highly irregular and has to be interpreted
in the sense of distribution. For every h ∈C∞

0 (R):

∫
h(t)

∫

V (t)
FFF(xxx, t)dxxxdt =−

∫
h′(t)

∫

V (t)
σσσ(xxx, t)dB̃BBtdxxxdt+

∫
h(t) d

∫

V (t)
ρwww(t,xxx)dxxxdt. (10)

Since both sides of this equation must have the same struc-
ture, the forces can be written as:

∫
h(t)

∫

V (t)
FFF(xxx, t)dxxxdt =−

∫
h′(t)

∫

V (t)
σσσ(t,xxx)dB̃BBtdxxxdt+

∫
h(t)

∫

V (t)
( fff (t,xxx)dxxxdt +θθθ(t,xxx)dB̃BBt)dxxx. (11)

The right hand first terms of (10) and (11) are identical and
cancel out. The second term of equation (10) corresponds
to the momentum derivative associated to the resolved ve-
locity component. The second term of (11) provides us the
structure of the forces under localization uncertainty. We
will consider that only body forces and surface forces are
involved (i.e. there is no external force except gravity). As a
direct extension of the deterministic case, the surface forces
are given as

ΣΣΣ =
∫

V
−∇∇∇(pdt +d p̃t)+µ(∆UUU +

1
3

∇∇∇(∇∇∇ ·UUU)),

where µ is the dynamic viscosity, p(xxx, t) denotes the de-
terministic contribution of the pressure and d p̃t is a zero
mean stochastic pressure fluctuation. The gravity force is
deterministic and standard. Expressing the forces balance
with momentum derivative from (5), incorporating the mass
preservation principle (7), and finally equating separately
the slow temporal components and the highly oscillating
Brownian terms, we get a general form of the Navier Stokes
equations under location uncertainty (12). The first equa-
tion of this system describes the evolution of the determin-
istic resolved component and similarly to Reynolds formu-
lation it includes an additional stress term that depends here
on the resolved velocity component and on the uncertainty

variance. The subsequent equations denote a stochastic bal-
ance on the diffusion tensor and a mass conservation con-
straint. This system simplifies greatly in several particular
cases. For the divergence free Kraichnan model with a fluid
of constant density, we get a system of Navier-Stokes equa-
tions:

(
∂www
∂ t

+www∇∇∇T www−γ
1
2

∆www)ρ = ρggg−∇∇∇p+µ∆www, ∇∇∇ ·www = 0,

(13)

where the diffusion is augmented by the Kraichnan noise
variance. This corresponds to the simplest Boussinesq eddy
viscosity assumption with a constant diffusivity coefficient.
For a general divergence free random component the drift
evolution reads:

(
∂www
∂ t

+www∇∇∇T www− 1
2 ∑

i, j

∂ 2

∂xix j
(ai jwww))ρ =ρggg−∇∇∇p+µ∆www, (14)

together with the volume preserving constraint (8). This
model includes now a more general diffusion term that
can be no more directly related to the Boussinesq eddy
viscosity formulation. We observe that for divergence free
uncertainty this term is globally dissipative as its energy is

∫

Ω
wwwT ∑

i, j

∂ 2

∂xi∂x j
(ai jwww)dxxx =−

∫

Ω
‖∇www‖2

adxxx.

Setting the uncertainty or its variance tensor allows defining
directly the subgrid diffusion term that has to be incorpo-
rated in the resolved drift component. For instance, con-
sidering uncertainties along iso-density surfaces provides
immediately a clear justification of the isopycnal diffusion
employed in oceanic circulation models. The use also of
constant eddy viscosity is also justified as the direct con-
sequence of an isotropic homogeneous uncertainty compo-
nent. Such an approach opens new perspectives for flow
modeling that goes from a priori uncertainty specification
to data based strategies. This framework, which does not
rely neither on Reynolds averaging nor on spatial filtering
concept, might be of great interest when uncertainties are
prevalent as it is the case in geophysical flows or climate
modeling. As another practical consequence, if one con-
sider measurements as supplied by particle image velocime-
try methods and related to the true flow kinematics only up
to a Gaussian uncertainty, then those measurements does
not follow exactly the actual flow dynamics. Their physical
interpretation should then be carried out with some care.

Numerical implementation and results
In this section, we describe the principal steps of the

wavelet numerical scheme we used to simulate the deter-
ministic drift component, www, with periodic boundary con-
ditions. Then, we present numerical results obtained on
Taylor-Green vortex (Brachet et al., 1983) simulation at
moderate Reynolds number. We will consider here only the
case of incompressible fluids with a general divergence free
uncertainty model.
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(
∂www
∂ t

+www∇∇∇T www)ρ− 1
2 ∑

i, j
ai jρ

∂ 2www
∂xi∂x j

−∑
i, j

∂ (ai jρ)
∂x j

|∇∇∇·σσσ=0
∂www
∂xi

= ρggg−∇∇∇p+µ(∆www+
1
3

∇∇∇(∇∇∇ ·www)),

∇∇∇d p̃t =−www∇∇∇T ρσσσdB̃BBt +µ(∆(σσσdB̃t)+
1
3

∇∇∇(∇∇∇ · (σσσdB̃t))),

dρt +∇∇∇ · (ρwww)− 1
2 ∑

i, j

∂ 2

∂xi∂x j
(ai jρ)|∇∇∇·σσσ=0

+
1
2
‖∇∇∇ ·σσσ‖2ρ) = ∇∇∇ · (ρσσσdB̃BBt).

(12)

As previously described, the resolved component is in
that case driven by the usual Navier-Stokes equations (14)
with an additional ”subgrid” anisotropic diffusion provided
by 1

2 ∑i, j
∂ 2

∂xi∂x j
(ai jwww).

Since the component www satisfies the incompressibility
constraint ∇ ·www = 0, projecting (14) onto to the divergence-
free function space allows us eliminating the pressure
gradient:

∂www
∂ t
−ν∆www = P[

1
2 ∑

i, j

∂ 2

∂xi∂x j
(ai jwww)−www∇∇∇T www], (15)

where P denotes the orthogonal projector from L2(Rd)d

onto the divergence-free function space. This projector, re-
ferred to as the Leray projector, is usually defined in the
Fourier domain. In this work, it is numerically specified
through a projection onto a divergence-free wavelet basis
{Ψdiv

jjj,kkk}, see (Deriaz & Perrier , 2006; Kadri-Harouna &

Perrier , 2011) for details.

Equation (15) corresponds to a heat equation with a
source term P[ 1

2 ∑i, j
∂ 2

∂xi∂x j
(ai jwww)−www∇∇∇T www]. Classical meth-

ods of heat kernel discretization can hence be used to de-
scribe its discrete time evolution. For a chosen time step δ t
and setting wwwn(xxx)' www(nδ t,xxx) with n ∈N, an implicit Euler
scheme applied to the diffusion term leads to:

(I−νδ t∆)wwwn+1 =wwwn−δ tP[
1
2 ∑

i, j

∂ 2

∂xi∂x j
(ai jwwwn)−wwwn∇∇∇T wwwn].

(16)
The pressure p is recovered from the Helmholtz decompo-
sition of the advection term with the anisotropic diffusion
term:

www∇∇∇T www− 1
2 ∑

i, j

∂ 2

∂xi∂x j
(ai jwww) =

P[www∇∇∇T www− 1
2 ∑

i, j

∂ 2

∂xi∂x j
(ai jwww)]−∇p.

The component www(t,xxx) is spatially specified in terms of
its divergence-free wavelet series (Deriaz & Perrier , 2006;
Kadri-Harouna & Perrier , 2011):

www(t,xxx) = ∑
jjj,kkk

djjj,kkk(t) Ψdiv
jjj,kkk (xxx), jjj,kkk ∈ Z2. (17)

This decomposition provides a good time and space scales
separation due to wavelets space localization. In this frame-
work, the coarse scale j is fixed as the coarse resolution of
the wavelet basis. This corresponds to 2 j mesh grid points
per direction on a cartesian grid.

As the divergence-free wavelet basis remains fixed
the unknowns in (17) correspond to the set of coefficients
djjj,kkk(t). Incorporating (17) in (16) and taking Ψdiv

jjj,kkk as test
function, we get:

R
(

dn+1
jjj,kkk

)
=M

(
dn

jjj,kkk

)
−δ tM

(
f n
jjj,kkk

)
, (18)

with dn
jjj,kkk = djjj,kkk(nδ t), f n

jjj,kkk the divergence-free wavelet coef-

ficients of P[ 1
2 ∑i, j

∂ 2

∂xi∂x j
(ai jwwwn)−wwwn∇∇∇T wwwn], M the Gram

matrix of the basis {Ψdiv
jjj,kkk } and R the matrix of the operator

(I−νδ t∆) on this basis. For the computation and the inver-
sion of theses matrices, see (Kadri-Harouna , 2010; Kadri-
Harouna & Perrier , 2011). One of the main advantages
of the method lies in its great flexibility of the anisotropic
diffusion coefficients specification. The tensor aaa can be
fixed from the a priori knowledges we have either on the
uncertainty’s variance or on the uncertainty diffusion ten-
sor. The uncertainty variance could as well be learned from
small scale measurements or specified from empirical local
statistics of the resolved component. Let us point out nev-
ertheless, that whatever the choice carried out, the explicit
discretization of anisotropic diffusion term in the temporal
discrete scheme of (15) induces a viscosity dependent CFL
type condition that must be carefully taken into account. In
this study we implement a very simple strategy that con-
sists in defining aaa(nδ t,xxx) as local empirical covariances of
the resolved velocity fields www(x)n:

ai j(x, t) =< (wi(y)−µi(x, t))(w j(y)−µ j(x, t))>y∈W (x,t),

where µi(x, t) is the empirical mean on a spatial or tempo-
ral window W (x, t). The empirical averaging is computed
either spatially over a small (3× 3× 3) window centered
around point (xxx, t) or temporally at point xxx, over the time in-
terval [(n−2)δ t,nδ t]. In the following, they are referred to
as the spatial and temporal uncertainty covariances respec-
tively. To evaluate the numerical accuracy and effectiveness
of our method for those two solutions, we take as bench-
mark the simulation of Taylor-Green vortex at Re = 1600.
This flow becomes rapidly turbulent with creation of small
scales structures, followed by a decay phase similar to a de-
caying homogeneous turbulence. Figure 1 shows the total
energy time evolution of the solutions computed with the
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Figure 1. Evolution of the dimensionless energy as a func-
tion of the dimensionless time.

previous two uncertainty covariance models, together with
the reference solution computed by a direct numerical sim-
ulation (DNS) of the incompressible Navier-Stokes equa-
tions on a 2563 grid. This corresponds to j = 8 wavelet
space resolution. The reference DNS solution on 1283 and
643 grids corresponds to wavelet multiresolution projection
onto those grids of the reference solution. They are hence
computed from a spatial cut-off. Let us point out that as it
does not correspond to a spectral filtering, the energy of this
projection intrinsically depends on the wavelet generator.
Wavelets offer from that point of view an optimal choice
with respect to a scale space energy representation due to
their fine space-frequency localization property. On Figure
2 we show the energy dissipation rates associated to the dif-
ferent solutions. As can be observed from these two curves,
the spatial covariance is associated to a higher dissipation
rates than the temporal covariance. The temporal covari-
ance clearly performs better. Compared to state of the art
results of the literature (Brachet et al., 1983; Fauconnier
et al., 2009), those first results are very encouraging. The
temporal covariance exhibits a lower dissipation and does
not yield any local dissipation when the flow is locally sta-
tionary. On the other hand it seems to require a higher CFL
condition. On Figure 3, we show the plot of Q iso-surfaces
for the dimensionless time t ≈ 8.5, with:

Q =−1
2 ∑

i, j

∂wi

∂x j

∂w j

∂xi
.

The sub spatial domain of Figure 3 corresponds to (0,π)3.
It can be readily observed that the solution computed using
the temporal covariance exhibits smaller vortex structures
in comparison to the spatial covariance uncertainty model.
Let us note that for both models the solutions resemble very
much to the corresponding projected DNS.

Conclusion
In this paper we have described a decomposition of the

Navier-Stokes equation in terms of a resolved deterministic
component and a random uncertainty component figuring
the unresolved flow component. This decomposition leads
to a new large scale simulation paradigms. Such a scheme
has been assessed for a Taylor-Green vortex flow and an
accurate wavelet based numerical scheme. The results ob-
tained for a local empirical uncertainty model computed on
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Figure 2. Evolution of the dimensionless energy dissipa-
tion rate as a function of the dimensionless time.

a temporal window of the resolved component leads to very
encouraging results when compared to state of the art large
scale simulation of this flow. Within the continuation of the
study, we will investigate the derivation of similar model for
geophysical flow equations and its use in the case of phys-
ical boundary conditions. This situation is more realist and
it is known that many sub grid models do not succeed in the
presence of a wall. Currently, we analyze the consistency
and stability of the associated wavelet numerical schemes.
We wish to investigate the use of variational data assimila-
tion technique to determine the sub grid tensor from image
data observation operator. This study will be the subject of
a new forthcoming paper.
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