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ABSTRACT
An experimental study involving a space-filling square

fractal grid is presented. Using time-resolved stereoscopic
Particle Image Velocimetry and Taylor’s hypothesis, all
components of the velocity gradient tensor are determined
in three regions along the centreline of this spatially de-
veloping flow: where turbulence is produced, at the turbu-
lence intensity peak and in the decay region. Some of the
acclaimed universal aspects of small-scale turbulence are
shown to be the result of an evolution process over a con-
siderable streamwise extent of the flow. The spatial evolu-
tion of the second (Q) and third (R) velocity gradient invari-
ants is presented and the related characteristic “universal
tear-drop” shape is only fully established at the most down-
stream location. A similar evolution is seen in the align-
ments between vorticity and the eigenvectors of the strain
rate tensor where, in the production region, vortex stretch-
ing is only slightly favoured over compression.

INTRODUCTION
Results from Seoud & Vassilicos (2007), Mazellier &

Vassilicos (2010), Valente & Vassilicos (2011), Valente &
Vassilicos (2012), Gomes-Fernandeset al. (2012), Discetti
et al. (2013) and Nagataet al. (2013) show that there is
well defined turbulent flow region downstream of space-
filling fractal square grids and regular grids where the ra-
tio of the integral length scaleL to the Taylor microscale
λ remains approximately constant as the Reynolds number
Reλ = u′λ/ν decays (u′ is the root mean square of the ve-
locity fluctuations andν is the kinematic viscosity). This
fact implies (see aforementioned references) that the dimen-

sionless dissipation constant,Cε , defined byε = Cε u′3/L
(whereε is the kinetic energy dissipation rate per unit mass)
is not constant as it is usually assumed to be at high enough
Reynolds numbers. Instead it increases asReλ decays like
Cε ≈ Re−1

λ . Even so, the flow in the region where this dissi-
pative behaviour is observed is approximately isotropic and
has a well-defined power law energy spectrum over a wide
range with exponent very close to -5/3.

Before the discovery of this flow region whereCε takes
this unusual scaling, the work of Hurst & Vassilicos (2007)
revealed some interesting characteristics of flow generated
by space-filling fractal square grids and in particular a pro-
tracted turbulence production region in the centreline. In
this region, the turbulent structures are formed and turbu-
lence intensity is produced and increasing. The length of
this region is usually small in the kinds of regular grids cus-
tomarily used for increasing homogeneity, but for the space-
filling fractal square grids this length is considerable.

Hence, in order to obtain more insight on these unusual
results, it is useful to study the behaviour of the velocity
derivatives and flow structures. This type of study allows
us to get insight on how statistics of energy dissipation are
formed and their dependence on vorticity and strain rate dy-
namics. To that end, an experiment on turbulence generated
by a fractal square grid was conducted using Particle Image
Velocimetry and a water channel.

EXPERIMENTAL SETUP
The same experimental facility and flow conditions as

Gomes-Fernandeset al. (2012) were used to perform an ex-
periment on the water flow generated by a space-filling frac-
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Figure 1. Space filling square fractal grid (SFG) geome-
try after Gomes-Fernandeset al. (2012). The “fractal it-
erations” parameter (N) is the number of times the square
shape is repeated at different scales. HereN = 4. Note that
the streamwise thickness of all the bars in the grid is the
same.

tal square grid denoted SFG17 (see schematic in figure 1).
This grid has four “fractal iterations” (N), it is characterized
by having a thickness ratio,tr, of 17 (wheretr = t0/tmin, t0
is the spanwise thickness of the thickest bar andtmin is the
spanwise thickness of the thinnest bar) and has a blockage
ratio of 25%. The free-stream velocity(U∞) was set at 0.48
m/s (case A of Gomes-Fernandeset al. (2012)) and mea-
surements were taken at 3 different locations at the cen-
treline in the streamwise direction (x) of the water chan-
nel: atx/xpeak

∗ = 0.57 which is in the production region, at

x/xpeak
∗ = 0.94 near the peak of turbulence intensity and at

x/xpeak
∗ = 2.04 in the decay region (xpeak

∗ is an estimator of
the turbulence intensity peak location according to Gomes-
Fernandeset al. (2012) and an improvement on the wake-
interaction length-scale introduced by Mazellier & Vassili-
cos (2010)). It is worth highlighting that in physical coor-
dinates the measurement locations in the streamwise direc-
tion for the three aforementioned flow regions are 0.8, 1.3
and 2.8 m downstream of the fractal grid. This is important
because the phenomena described in this paper and taking
place in the production and peak locations are not just tran-
sitional and therefore of minor importance. In fact, they oc-
cur over a considerable length which can even be elongated
or shortened depending on the size and design of the fractal
grid (for this purpose see Gomes-Fernandeset al. (2012)).

Time-resolved Stereo Particle Image Velocimetry
(SPIV) was the experimental technique used following the
procedure outlined in Ganapathisubramaniet al. (2007).
The light sheet was set perpendicular to the flow direction
where, in a plane, the three components of velocity were
measured with a frequency of 2.2 kHz. Taylor’s hypothesis
was applied based on the distribution of the mean velocity in
the measurement plane in order to compute the velocity gra-
dients in streamwise direction(∂/∂x = −1/Uc(y,z)∂/∂ t).
To eliminate some of the noise present in the data, the ve-
locity field was smoothed at each measured location with a
3D Gaussian filter with half-width equal to the resolution
at that location. The final resolution in terms of the Kol-
mogorov microscaleη is presented in table 1. It depends
on the flow region and whether it is a streamwise (x direc-
tion) or a spanwise (y and z plane) component. The reso-
lution in the y and z plane is based on the size of the PIV
interrogation window.

Table 1. Experiment resolution.

Station x direction y and z plane

x/xpeak
∗ = 0.57 1.8η 4.3η

x/xpeak
∗ = 0.94 1.7η 4.8η

x/xpeak
∗ = 2.04 1.3η 3.4η
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Figure 2. PDF of the divergence of the velocity field nor-
malized by the norm of the velocity gradient tensor in the
decay region.

The accuracy of the measured velocity gradients is as-
sessed by computing the divergence of the velocity field
(∇.u). Figure 2 shows the PDF of∇.u normalized by the
norm of the velocity gradient tensor atx/xpeak

∗ = 2.04. The
standard deviation of this PDF serves as a basis for com-
parison with other similar experiments where the complete
velocity gradient is determined. The standard deviation is
0.41, 0.38 and 0.33 forx/xpeak

∗ = 0.57, 0.94 and 2.04, re-
spectively, in line with the results of Mullin & Dahm (2006)
who reported a standard deviation of 0.35, Khashehchiet al.
(2010) who reported 0.3 and Ganapathisubramaniet al.
(2007) who reported 0.25.

RESULTS
General Flow Structures

Figure 3 shows a sample of the iso-surfaces of enstro-
phy (ω2) corresponding to 8% of the maximum found in

the reconstructed volume aroundx/xpeak
∗ = 0.57. The inter-

mittency of areas with concentrated vorticy is noticeable in
this figure.

We now try to assess the broad range of excited turbu-
lent scales in each region. To that end we use the second
order structure function, i.e.< δu2(r) > whereδu(r) =
u(x)−u(x+r) in terms of the streamwise fluctuating veloc-
ity componentu(x) evaluated in the reconstructed volume
from Taylor’s hypothesis and normalized by the Taylor mi-
croscale. Figure 4a shows the second order structure func-
tion of the entire volume at locationx/xpeak

∗ = 0.57. There
is no clear 2/3 power law range in this location.

We now follow the same approach as Mouriet al.
(2008) and analyse sub-volumes of the entire reconstructed
volume. One might expect that in highly vortical re-
gions (such as the one in−2550< x/η < −2050, see fig-
ure 3) there is a broader range of excited scales with a
Kolmogorov-like scaling exponent closer to 2/3 than in less
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Figure 3. Iso-surfaces of enstrophy for 8% of the max-
imum enstrophy found at this location. Volume recon-
structed from Taylor’s hypothesis forx/xpeak

∗ = 0.57.

active regions. However, this is not the case atx/xpeak
∗ =

0.57 where we found that the broadest range of scales with
a close to 2/3 power law is located upstream of a highly
vortical region such as−3050< x/η < −2550 in figure 3.
For this particular region figure 4b shows that the second-
order structure function adopts, for more than one decade,
a power law with a Kolmogorov 2/3 exponent. The struc-
ture function with the same maximum sizer in the region
−2550< x/η < −2050 (high enstrophy region) does not
show a 2/3 power law (see figure 4c). This feature is differ-
ent from what is found in Mouriet al. (2008) where smaller
sub-regions of the flow never display a larger power law
range when compared to the whole volume. As explained
in Laizet et al. (2013) the conditions for universal equilib-
rium and for the Kolmogorov theory to be valid are not
obviously present at the locationx/xpeak

∗ = 0.57. In the
present experiment there is significant background turbu-
lence (see Gomes-Fernandeset al. (2012)) by comparison
to their clean DNS which returns a very clear 2/3 power law
near the grid without having to find a well tuned sub-region
for this to happen.

Invariants of the Velocity Gradient Tensor
It is useful to look at Q-R diagrams whereQ =

1/4(ωiωi −2si js ji), R =−1/3(si js jkski +3/4ωisi jω j) and
si j andωi are the strain rate and vorticity, respectively, of
the velocity fluctuations. It has been suggested (first by
Chacin & Cantwell (2000) and then by Tsinober (2009))
that this diagram has an universal tear drop shape due to the
appearance of that shape in many turbulent flows such as
boundary layers, mixing layers, grid turbulence and jet tur-
bulence (see Tsinober (2009)). It is fair to question whether
universal equilibrium and universal tear drop of the Q-R di-
agram are somehow related.

In line with what Laizetet al. (2013) report we present
in figure 5 the spatial evolution of the Q-R diagram for the
three stations studied in the present paper,x/xpeak

∗ = 0.57,
0.94 and 2.04. To the best of our knowledge, this is the first
time a spatial development of these statistics is presented
from experimental data. For the region wherex/xpeak

∗ =
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Figure 4. Second order structure function evaluated in a)
entire volume, b)−3050< x/η < −2550 and c)−2550<
x/η <−2050 (see figure 3) atx/xpeak

∗ = 0.57.

2.04 the Q-R diagram is similar to the ones obtained in
the aforementioned references with the classical tear drop
shape. This information should not be taken lightly be-
cause it is in this very same region that we find the unusual
scaling for the dimensionless energy dissipation constant
(Cε = 2ν < si js ji > L/u′3) with fractal grids and yet the
Q-R diagram does not show any difference from the ones
with classical energy dissipation scaling.

For classical tear drop shape Q-R diagrams, the areas
dominated by strain (whereQ < 0) are in general produc-
ing more gradients of the strain type than the vorticity type
(R > 0) which gives rise to the typical tail shape of the dia-
gram. However, the Q-R diagram atx/xpeak

∗ = 0.57 shows
that in strain dominated regions the prevalence of strain
production regions (R > 0) over enstrophy production ones
(R< 0) is not as evident as atx/xpeak

∗ = 2.04. It is important

to highlight that a region exists atx/xpeak
∗ = 0.57 with a 2/3
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Figure 5. Spatial evolution of the Q-R diagram. The con-
tour levels range from 100 to 10−3.

power law in the second order structure function over more
than one decade of turbulent scales (figure 4b) even though
the Q-R diagram has not reached the classical shape. The
measurement station located at the peak of turbulence in-
tensity in the streamwise direction,x/xpeak

∗ = 0.94, shows
a transiting Q-R diagram where a more pronounced tail is
noticeable and larger velocity gradients appear.

We defineQ = Qs +Qω whereQs = −1/2si js ji and
Qω = 1/4ω2 andR = Rs +Rω whereRs = −1/3si js jkski
and Rω = −1/4ωiω jsi j. For homogeneous turbulence it
can be proved that< Q >= 0 and< R >= 0. Mazellier
& Vassilicos (2010) showed that atx/xpeak

∗ ≤ 1 the flow
is significantly non-homogeneous and Seoud & Vassilicos
(2007), Mazellier & Vassilicos (2010) and Valente & Vas-
silicos (2011) showed that it is approximately homogeneous
at x/xpeak

∗ > 1 as far as the mean flow and turbulence pro-
files are concerned but not as far as third order statistics such
as pressure and turbulence transport terms are concerned (at
least up to a distance from the grid not yet explored). Nev-
ertheless, our statistics show that< Q >≈ 0 and< R >≈ 0
at all our three positions before, near and afterxpeak

∗ . The
behaviours of< Qs > and< Qω > and< Rs > and< Rω >
which add up to zero are shown in figures 6 and 7.

Figure 6. Spatial evolution of<Q>,<Qs > and<Qω >

normalised by the root mean square ofQ.

Figure 7. Spatial evolution of< R >, < Rs > and< Rω >

normalised by the root mean square ofQ to the power of
3/2.

Alignments
Another example of the universal characteristic of tur-

bulent structures is the alignment between vorticity (ω)
and the eigenvectors of the strain rate tensor (ei for i=1
to 3). The first eigenvector (e1) is associated with the ex-
tensive eigenvalue (λ1 > 0), the second eigenvector (e2)
with the either extensive or compressing eigenvalue (λ2)
and the third eigenvector (e3) with the compressive eigen-
value (λ3 < 0). The behaviour usually reported (see, for
example, Ashurstet al. (1987), Ruetsch & Maxey (1992)
and Tsinober (2009)) is that vorticity is most likely aligned
with the second eigenvector, that there is no preferential
alignment with the stretching eigenvector and that it is mis-
aligned with the compressive eigenvector.

Figure 8 shows the alignments for the three flow re-
gions studied. Even though vorticity is most likely aligned
with the second eigenvector, it starts by being slightly mis-
aligned with the stretching and compressive eigenvector and
evolves to the aforementioned usual behaviour. The be-
haviour seen in the production region has implications in
the enstrophy production rate and, therefore, vortex stretch-
ing, as

ωiω jsi j = ω2
i λicos2(ω,ei) (1)

The largest contribution to vortex stretching comes
from the first (largest) eigenvalue (see table 2) even though
vorticity is mainly aligned with the second one. This is
due to the fact the second eigenvalue can be both posi-
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Table 2. Contribution to the total mean of enstrophy production rate from theterms corresponding to the eigenvectorsei of
the strain rate tensor of the velocity fluctuations. The contribution from eacheigenvector is normalized by< ωiω jsi j >. The
values of the regular grid case were taken from Tsinober (2009) and the field experiment in atmospheric surface layer case from
Kohlmyanskyet al. (2001).

x/xpeak
∗ 0.57 0.94 2.04 Reg. Grid Field

Reλ 271 364 257 75 104

< ω2
1λ1cos2(ω,e1)> 3.2 3.65 1.58 1.17 1.44

< ω2
2λ2cos2(ω,e2)> 0.42 0.33 0.39 0.39 0.47

< ω2
3λ3cos2(ω,e3)> -2.62 -2.98 -0.96 -0.56 -0.97
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Figure 8. Spatial evolution of the alignments.

tive or negative which results in a small contribution of
< ω2

2λ2cos2(ω,e2)> to the overall enstrophy production.
Table 2 shows the contributions to the mean enstrophy

production rate from the different eigenvectors of the strain
rate tensor for the regions studied as well as for a reference
case of a regular grid turbulence taken from Tsinober (2009)
and a field experiment in atmospheric surface layer taken
from Kohlmyanskyet al. (2001). The regular grid and field
experiment serve as references to conclude that the contri-

butions of the stretching and compressive eigenvectors to
the total mean of the enstrophy production rate are high at
x/xpeak

∗ =0.57 and 0.94. Atx/xpeak
∗ =2.04 values comparable

to the reference cases are recovered.
The ratio < ω2

1λ1cos2(ω,e1) >
/
∣∣< ω2

3λ3cos2(ω,e3)>
∣∣ (which relates the strength

of vortex stretching over compression) at, for instance,
x/xpeak

∗ = 0.57 is equal to 1.2 where for the regular grid

case is 2.1. This reveals that, in stationx/xpeak
∗ = 0.57,

the vortex stretching is only slightly favoured over com-
pression. This behaviour comes from the unusually high
magnitude of the stretching and compressive eigenvalues
(see table 3) given that the vorticity is initially not aligned
with these eigenvectors (see figure 8). It may be particu-
larly interesting to compare stationsx/xpeak

∗ = 0.57 and

x/xpeak
∗ = 2.04 as they have very similar localReλ values

and similar PIV resolutions. Yet, in stationx/xpeak
∗ = 2.04

the vortex stretching and compressing are comparable to
the field experiment of Kohlmyanskyet al. (2001).

Table 3 shows the ratios between< λ 3
i > and− <

si js jkski > for the regions studied and the aforementioned
atmospheric field experiment. For the production and peak
regions of the fractal grid there are stronger events (relative
to the mean level of strain production at each station) by
comparison to the decay region and the field experiment.

Table 3. Ratios between< λ 3
i > and−< si js jkski >. The

values of the field experiment in atmospheric surface layer
case were taken from Kohlmyanskyet al. (2001).

x/xpeak
∗ 0.57 0.94 2.04 Field

< λ 3
1 > 4.54 4.54 1.57 1.62

< λ 3
2 > 0.05 0.05 0.06 0.05

< λ 3
3 > -5.59 -5.59 -2.63 -2.67

At x/xpeak
∗ = 0.57, and specifically in the sub-volume

−3050< x/η < −2550, the alignments are very similar
to the entire volume seen in figure 8 and the mean vortex
stretching is practically the same as seen in table 2. Never-
theless, in this sub-volume we find a well defined 2/3 power
law over a clear significant range (figure 4b). An attempt to
differentiate this specific sub-volume from the rest of the
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volume in terms of high vortex stretching and enstrophy
production rateα = ωiω jsi j/ω2 structures was not possi-
ble. It is therefore fair to question the importance of vortex
stretching in the generation of Kolmogorov-type power law
exponents.

CONCLUSIONS
An experiment regarding the spatial development of

the turbulent flow generated by a fractal grid was presented
and discussed. Time resolved cinematographic stereoscopic
PIV allowed to measure all nine components of the velocity
gradient tensor using Taylor’s hypothesis. Three stations
located in the production, peak and decay regions of tur-
bulence intensity were studied. At the production region
station there are specific structures where a broad range of
turbulent excited scales appear. This phenomenon trans-
lates as a broad 2/3 power law range in the second order
structure function conditioned on specific structures. Some
acclaimed universal characteristics of turbulence structure
were shown to be a gradually developing process through-
out the production and peak regions. This should not be
taken lightly given that these regions extend for 1.3m down-
stream of the grid in our experiment and can be as long as
the grid design permits. The first universal aspect that was
shown to be an evolution was the QR diagram. Its charac-
teristic “tear-drop” shape becomes more pronounced down-
stream of the grid, at least until the location of our measure-
ments in the decay region. In this region, the QR diagram
has the usual “tear-drop” shape even though it is this region
where the unusualCε scaling is found. The second point on
universal aspects of turbulence structures is the alignment
between vorticity and the eigenvectors of the strain rate ten-
sor. The stretching eigenvector starts by being slightly mis-
aligned with vorticity in the production region station and
ends up slightly aligned with it in the decay region station.
High values of the eigenvalues in the production region sta-
tion has implications for vortex stretching which is stronger
in this station than in the decay one.
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