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ABSTRACT
In flow control, reduced-order models based on Proper

Orthogonal Decomposition (POD ROM) are often used as
surrogate model for deriving a control law. However, these
models are in general too fragile to be used in closed-loop
control where the dynamics is strongly modified by the
control. Here, a 4D-Variational data assimilation approach
(4D-Var) as classically used in meteorology is used to es-
timate at best the state of the system from inhomogeneous
sources of information coming from a model, noisy obser-
vations and a background solution. Two complementary
strategies (strong constraint 4D-Var and weak constraint
4D-Var) are assessed in the case of a cylinder wake flow
with data coming from numerical simulation and PIV ex-
periments.

Keywords : cylinder wake, data assimilation, estima-
tion, POD, reduced-order model

INTRODUCTION
In turbulence, the number of active degrees of freedom

is so important that a preliminary step of model reduction
is compulsory for determining an efficient control strategy.
The general objective of model reduction is to extract, from
physical insights or mathematical tools, the building blocks
which play a dominant role in terms of dynamical mod-
elling. For historical reasons, Proper Orthogonal Decompo-
sition (see Cordier & Bergmann 2008 for an introduction)
is the most used reduction approach in the turbulence com-
munity. POD is widely employed since it extracts from a
sequence of data an orthonormal basis which captures opti-
mally the flow energy. In general, this basis is then used in a
Galerkin approach to derive a POD Reduced-Order Model
(POD ROM) of the flow by projecting the Navier-Stokes
equations onto the POD modes. Unfortunately, this dynam-
ical system is sometimes not sufficiently accurate to predict
anything useful in terms of flow control, and identification
methods (Cordier et al., 2010) are then used to improve the
prediction ability of the POD ROM. In this communication,
an alternative procedure is proposed where identification
methods are replaced by data assimilation.

Data assimilation is a generic methodology which
combines heterogeneous observations with the underlying
dynamical principles governing the system under observa-
tion to estimate at best physical quantities. Starting from a
background solution and incoming imperfect informations,
an optimal estimation of the true state of the system is de-
termined (see Fig. 1) which takes into account the respec-
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Figure 1. Schematic representation of 4D-Var.

tive statistical confidences of the different observations. By
convention, this true state is often called analysed solution.
Data assimilation is now routinely used in meteorology and
oceanography to combine images coming from satellites,
meteorological observations and a dynamical model in or-
der to forecast the weather (Navon, 2009). Since numeri-
cal weather prediction is an initial value problem, the goal
of assimilation is here to find the best initial condition of
the numerical model that minimises the observations errors.
In fluid mechanics, data assimilation was more recently in-
troduced for estimating quantities (Papadakis, 2007) and
predicting their time evolutions. There are two basic ap-
proaches in data assimilation: stochastic estimation that is
based on probability considerations (Kalman filtering for
instance), and variational data assimilation, which is used
in this communication, where the estimation is found as
a solution of an optimization problem. When the obser-
vations are distributed in time, this approach is referred as
four-dimensional variational assimilation or 4D-Var.

If the dynamical model is assumed to be known per-
fectly then no extra uncertainty terms are included in the
governing equations and the 4D-Var is said with strong con-
straint (see section 1). In that case, the solution of the model
is considered to be only dependent on some unknown or
imperfectly known parameters: initial condition and coeffi-
cients of the model. These values can then be used as con-
trol parameters in a minimization problem where the cost
functional is built as a sum of an observation error, which
measures the difference between the observations and the
output of the identified model, and different background er-
rors, which penalize the variation between the background
states and the estimated values. In practice, these different
terms can be weighted accordingly on the level of statistical
confidence that can be evaluated from expert knowledge.
Another strategy is to consider a weak constraint assimila-
tion approach (see section 2) where the coefficients of the
model are assumed to be known in advance, and where an
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uncertainty function is added to the dynamical model.
The solutions of these constrained optimization pro-

blems are computed through an iterative descent algorithm
where the gradient of the cost functional with respect to the
variation of the control parameters is found by solving an
adjoint problem. Computing the solution of an optimal-
ity system is known to be computationnaly very expensive
since the optimal solution is found iteratively by integrat-
ing backward in time the adjoint equation. However, here,
the dynamical model corresponds to a POD ROM and then
the computation is numerically tractable (D’Adamo et al.,
2007).

In this communication, two datasets of increasing dy-
namical complexity have been used: i) a DNS dataset of a
cylinder wake flow at a Reynolds number of 200 (see sec-
tion 4.1) to validate the algorithm with twin experiments,
and ii) an experimental PIV dataset of a cylinder wake flow
at a Reynolds number of 40000 (see section 4.2). In the two
cases, a POD analysis has first been done and then a POD
ROM derived by Galerkin projection of the Navier-Stokes
equations onto the POD basis. In the 4D-Var setting, the
POD temporal modes served as observations for the assim-
ilation procedure. We will see in section 4 that a qualitative
good prediction can be obtained for the two datasets and
that relaxing the dynamical constraint can help in the PIV
case to follow the observations.

1 STRONG CONSTRAINT 4D-VAR
Let X be the state variable and M be the non-linear

operator relative to the dynamics, the evolution in time of X
is given by the following dynamical system:





∂X
∂ t

(t)+M(X(t),u) = 0

X(0) = Xb
0 +η

(1)

where Xb
0 is an a priori known initial condition of the sys-

tem, η an initial condition perturbation and u a set of coef-
ficients of the model.

Strong constraint assimilation consists of finding the
solution X(t) of the dynamical system (1) that is closest
at the same time to the observations Y and to regularisa-
tion terms called background terms. The goal is then to find
the control parameters (η ,u) which minimize the cost func-
tional J defined as:

J (u,η) =
1
2

∫ T

0
‖Y (t)−H(X(t;η ,u))‖2

R−1 dt

+
1
2
‖η‖2

B−1 +
1
2
‖u−ub‖2

C −1 . (2)

The non-linear operator H, called observation opera-
tor, goes from the state space to the observation space. R,
B and C are covariance tensors of the observation space,
state space and control space. They are related respectively
to the observations, the state variables’ initial conditions
and to the control variables. The norms ‖ · ‖R−1 , ‖ · ‖B−1

and ‖·‖C −1 are induced norms of the inner products 〈R·, ·〉,
〈B·, ·〉 and 〈C ·, ·〉. The role of these covariance tensors
is to give more or less confidence in the observations and
background states. These tensors have a key influence
for combining inhomogeneous sources of information in

data assimilation. The covariance tensors may be chosen
based on extra knowledge of the system. Here, they have
been simply defined as diagonal tensor. The optimal
control parameters (ηa,ua) are called analysed solutions
and the associated analysed dynamics Xa(t) is the best
estimation of the system’s state, solution of (1) according
to the criterion (2). The couple (0,ub) corresponds to the
background solution of the problem. Data assimilation is
described schematically in Fig. 1.

The minimization of J is done using the limited stor-
age variant of the BFGS quasi-Newton algorithm (Gilbert &
Lemaréchal, 2009). For determining the descent directions,
the gradients of the functional with respect to the two con-
trol variables η and u need first to be evaluated. The use of
finite differences to determine the gradient of the cost func-
tional is in practice unfeasible when the dimension of the
state variables is too large. An elegant solution is to write
an adjoint formulation of the problem. We will see soon
that the determination of the gradient of J with respect to
the control variables then corresponds to the forward inte-
gration of the dynamical system (1) followed by a backward
integration of an adjoint dynamical model to be determined.

In variational data assimilation, the analysed dynam-
ics is found as solution of the constrained minimization
problem given by (2) and (1). A classical way for solving
this type of constrained optimization problem (Gunzburger,
1997) is by introducing a Lagrangian functional L defined
by

L (X(t),u,η ,λ (t),µ) = J (u,η)

−
∫ T

0

〈
∂X(t)

∂ t
+M(X(t),u) ,λ (t)

〉
dt

−〈X(0)−Xb
0 −η ,µ〉

(3)

where λ (t) and µ are two Lagrange multipliers introduced
to enforce the constraints given by (1). When the minimum
of J is reached, ∇J = ∇L = 0.

Setting the first variation of L with respect to X to 0
leads to the adjoint equation

−∂λ
∂ t

(t)+
(

∂M
∂X

)∗
λ (t)

=

(
∂H
∂X

)∗
R−1 (H(X(t))−Y (t)) ,

(4)

where ∂M
∂X and ∂H

∂X denote respectively the linear tangent

operator1 of M and H, and
(

∂M
∂X

)∗
and

(
∂H
∂X

)∗
their ad-

joint operators2. The adjoint equation (4) is defined back-
ward in time with the terminal condition λ (T ) = 0.

Setting the first variation of L with respect to the con-
trol parameters u and η to 0 leads to the optimality condi-

1The linear tangent of an operator A is the directional derivative
operator or Gâteaux derivative of A defined as:

∂A
∂X

(X)δX = lim
h→0

A(X +hδX)−A(X)

h
∀δX .

2The adjoint A∗ of a linear operator A on a space D is such that
∀x,y ∈D ,〈Ax,y〉= 〈x,A∗y〉.
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tions





∂J

∂u
=−

∫ T

0

(
∂M
∂u

)∗
λ (t)dt +C−1(u−ub)

∂J

∂η
= λ (0)+B−1η .

(5)

These optimality conditions can then be evaluated to
determine the gradient of J as soon as the Lagrange mul-
tipliers are known, it means as soon as the adjoint equation
(4) is integrated backward in time.

2 WEAK CONSTRAINT 4D-VAR
In the strong constraint 4D-Var context (see section 1),

the coefficients u of the model were considered to be ad-
justable parameters that can be optimally determined to re-
produce imperfect observations of the dynamical system.
Here, this constraint is relaxed and we assume that the co-
efficients of the dynamical system are directly provided by
the data. For taking into account errors of the model, the
dynamical system is then defined up to an additive uncer-
tainty function w(t) considered as Gaussian white noise. In
the weak constraint 4D-Var approach, the dynamical system
becomes:





∂X(t)
∂ t

+M(X(t)) = w(t)

X(0) = Xb
0 +η .

(6)

In that case, the control parameters of the variational assim-
ilation approach are w(t) and η and the cost functional to
be minimized is:

J (w(t),η) = 1
2

∫ T

0
‖Y (t)−H(X(t))‖2

R−1 dt

+1
2‖η‖

2
B−1 +

1
2

∫ T

0
‖w(t)‖2

W −1dt,
(7)

where W is the covariance matrix of w(t). To solve the con-
strained optimization problem associated to this new formu-
lation, the same procedure as the one described in section 1
is followed. A Lagrangian functional defined as

L (X(t),w(t),η ,λ (t),µ) = J (w(t),η)

−
∫ T

0

〈
∂X(t)

∂ t
+M(X(t))−w(t),λ (t)

〉
dt

−〈X(0)−Xb
0 −η ,µ〉,

(8)

is first introduced. The first variation of L with respect to
X(t) leads to the same adjoint equation as in the case of the
strong constraint 4D-Var i.e.

−∂λ
∂ t

(t)+
(

∂M
∂X

)∗
λ (t)

=

(
∂H
∂X

)∗
R−1 (H(X(t))−Y (t)) ,

(9)

with the terminal condition λ (T ) = 0. Finally, the first vari-
ation of L with respect to the control parameters leads to

the following optimality conditions:





∂J

∂w
(t) = λ (t)+W −1w(t)

∂J

∂η
= λ (0)+B−1η .

(10)

In this formulation, the uncertainty function w(t) is
part of the dynamical system. Then, since the optimal so-
lution is found on a given time horizon T , it means that the
weak constraint 4D-Var approach can not be used to pre-
dict the system’s state after the end of the assimilation time
interval.

3 POD REDUCED-ORDER MODEL
Given the high spatio-temporal complexity of turbulent

flows, adopting a model-based approach in flow control is
extremely attractive. Indeed, difficult to imagine deriving
an efficient control strategy in open-loop and even more, in
closed-loop, if no dynamical model is used in the design
process. A natural tendency would be to go towards mod-
els based on first principles. However, the number of active
degrees of freedom in turbulence is so high that it will lead
to high fidelity model of very large dimension. A way to
cope with this difficulty is to employ surrogate models for
developing the control strategy. Proper Orthogonal Decom-
position (Cordier & Bergmann, 2008) is often used for this
purpose since it extracts, from snapshots, modes that are op-
timal to capture the energy of the system. Starting from a
set of Ns snapshots of velocity fields vvv taken evenly over a
time interval [0,Ts], snapshot POD can be used to determine
spatial modes ΦΦΦi and temporal coefficients aP

i (t) such that:

vvv(xxx, t) = vvvm(xxx)+
Ns

∑
i=1

aP
i (t)ΦΦΦi(xxx), (11)

where vvvm corresponds to the average of the snapshots and
where xxx ∈Ω, the spatial domain of interest. Truncating the
number of modes in (11) to Ngal, with Ngal�Ns, this expan-
sion is substituted into the Galerkin projection of the incom-
pressible Navier-Stokes equations onto the spatial modes ΦΦΦi
to obtain a POD Reduced-Order Model (POD ROM). After
some algebraic manipulations (Cordier et al., 2010), the fol-
lowing expression is found for the POD ROM:

daR
i (t)
dt

=Ci +
Ngal

∑
k=1

LikaR
k (t)+

Ngal

∑
k=1

Ngal

∑
j=1

Qi jkaR
j (t)a

R
k (t) (12)

where aR
i (0) = aP

i (0). The constant, linear and quadratic
coefficients, Ci, Lik and Qi jk depend explicitly on ΦΦΦi and
vvvm and as such their values can be directly determined.
However, it is well known (Cordier et al., 2010) that for
different reasons (structural instability of the Galerkin pro-
jection, truncation of the POD basis, inaccurate treatment
of the boundary and pressure terms) the dynamical system
(12) does not represent sufficiently well the correct dynam-
ics. This problem is then perfectly matching the objectives
of data assimilation as described in introduction. The tem-
poral coefficients aR

i (t) can be considered as state variables
X(t). The POD ROM (12) can serve as dynamical model
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M and the POD coefficients aP
i (t) as observations Y (t). Fi-

nally, the coefficients Ci, Lik and Qi jk of (12) can be used as
control parameters u in the strong constraint 4D-Var. Con-
cerning the background solutions Xb

0 and ub, they can be
determined from the temporal coefficients obtained directly
by POD (aP

i (t)) for the initial condition, and from the values
determined by Galerkin projection or identification (Cordier
et al., 2010) for the coefficients of the POD ROM. The two
4D-Var formulations described in sections 1 and 2 can then
be easily applied.

As a final remark, let us comment on the differences
between the approach followed in this communication and
the reduced-order strategy often employed for 4D-Var data
assimilation in meteorology (Robert et al., 2005; Daescu
& Navon, 2007). In flow control, a low-order dynamical
system is often first developed and then an optimal con-
trol approach, or here a variational data assimilation pro-
cedure, is then applied. In meteorology, the steps of vari-
ational data assimilation and reduced-order modelling are
reversed. A full dynamical model is first considered for the
data assimilation and since the analysed solution is searched
iteratively by integrating forward/backward in time the di-
rect/adjoint systems, the control space is then restricted to
a low-dimensional space spanned by the first POD eigen-
functions. In the two strategies, the computational costs
are highly decreased. However, the influence of the cho-
sen strategy on the determination of the analysed solution is
still not well determined.

4 RESULTS
In this section, the variational data assimilation ap-

proach will be tested in a simple flow configuration cor-
responding to the cylinder wake. Due to its simple ge-
ometry and its representative behaviour of separated flows
(Zdravkovich, 1997), the viscous flow past a circular cylin-
der has been extensively used in the past decade as a test
bed to develop control strategies (Bergmann et al., 2005).
Here, the first objective is to evaluate the ability of 4D-Var
to improve the description of the dynamics within the time
horizon where the observations are known. By definition
(see introduction), this interpolatory requirement should be
offered by 4D-Var. A second objective is to assess the pre-
dictive behaviour of the dynamical system obtained as so-
lution of 4D-Var and to measure the influence of strong and
weak constraint hypothesis on the analysed dynamics.

In a first time (see section 4.1), the 4D-Var approach
will be applied on numerical data to test the method and
evaluate the role of some numerical parameters. In particu-
lar, the assimilation procedure will be exercised with a con-
venient methodology, termed as twin experiments. In a sec-
ond time (see section 4.2), an experimental dataset based on
PIV data will be used to analyse this time the influence of
the dynamical complexity of the observed dynamics on the
analysed solution obtained by 4D-Var.

4.1 Numerical dataset
4D-Var The 4D-Var approach is here applied to a two-
dimensional incompressible cylinder wake flow at Re =
200. The database was computed using a finite-element
code (DNS code Icare, IMFT/university of Toulouse, see
Favier 2007 for details) and contains Ns = 200 two-
dimensional snapshots of the flow velocity, taken over a
period Ts = 12 i.e. over more than two periods of vortex
shedding (Tvs = 5). Since 4D-Var is applied on POD-ROM

with observations corresponding to the POD temporal co-
efficients aP

i , snapshot POD is first applied on the previous
data. The first six POD modes are here sufficient to repre-
sent 99.9% of the flow energy (see Cordier et al. 2010 for
more details on the procedure and on the POD results) indi-
cating that Ngal = 6 should be sufficient for the order of the
POD ROM (12).

The strong constraint 4D-Var, as described in section
1, is now applied. The background of the initial condition
is given by aP

i (t = 0) and the background of the coefficients
Ci, Lik and Qi jk of (12) are equal to zero. These background
values are also used to initialize the coefficients of the dy-
namical system (12) at the beginning of the iterative proce-
dure. Lastly, the covariant matrices are chosen as R−1 = I
and B−1 = C−1 = σ2I where σ = 10−3 and I denotes the
identity matrix.

-2

0

2

-3 -2 -1 0 1 2 3 4

a
2

a1

1

-0.6

-0.3

0

0.3

0.6

-3 -2 -1 0 1 2 3 4

a
3

a1

1

-0.6

-0.3

0

0.3

0.6

-0.4 0 0.4

a
4

a3

1

-1.5

-1

-0.5

0

0.5

-0.6 -0.3 0 0.3 0.6

a
6

a3

POD

4D-Var

1
Figure 2. Results of 4D-Var for the DNS dataset (perfect
observations).

Figure 2 represents the results of strong constraint 4D-
Var for the DNS dataset when perfect observations are used.
The 4D-Var approach has been first applied over the 200
time steps contained in the database (assimilation window).
Then, the analysed dynamical model has been integrated
in time over 400 time steps (forecast window) to conclude
on the predictive character of the model. Very good agree-
ments are obtained between the observations and the anal-
ysed dynamics. Moreover, the analysed model can predict
correctly the dynamics over twice the assimilation period.

Twin experiments Twin experiments (Titaud et al.,
2010) is a procedure used to test 4D-Var performances. It
consists first to get a ”true state” of the system. This true
state can be known analytically or, as we will do, can come
from a 4D-Var procedure with perfect observations. In a
second step, modified observations are artificially gener-
ated by under-sampling and noising the perfect observa-
tions. At this point, 4D-Var can then be performed and
the analysed solution be compared with the true state. This
procedure shows the ability of the model to represent the
state under observation and to predict its future. The anal-
ysed dynamics obtained previously with perfect observa-
tions (see Fig. 2) is now considered as true state for the twin
experiments. The previous observations aP

i (t) are modi-
fied by adding a Gaussian noise defined as X /σi where
X ' N (0,σ2

t ) with σt = 0.2 and σi = 2[ i+1
2 ] where [x]

returns the nearest integer to x. These noisy states are taken
as observations for the twin experiments. The strong con-
straint 4D-Var approach is applied with the same numerical
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parameters as in the previous case.
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Figure 3. Results of 4D-Var twin experiments for the DNS
dataset (noised observations).

Figure 3 represents the results of the twin experiments
for the DNS dataset. Despite the noisy observations used
in the 4D-Var approach, the analysed dynamics is in good
agreement with the expected true state. Moreover, the fore-
cast dynamics corresponds to the correct attractor of the sys-
tem. The interest of the twin experiments framework is to
fairly compare different assimilation procedures based on
the values of the error e(t) defined as

e(t) =

√√√√
Ngal

∑
i=1

(
ai(t)−aTrue

i (t)
)2
, (13)

where ai(t) corresponds to the ith temporal coefficient of the
POD expansion. Figure 4 represents the time evolution of
(13) for the twin experiments. The minimum level of error
that can be obtained corresponds to the case where perfect
observations are used (Fig. 2). These reference values are
represented in Fig. 4 for comparison with the case where
the observations are noised. In addition, the time error for
the analysed dynamics is also given in Fig. 4. As it can be
expected from the 4D-Var approach, the value of error is
systematically lower than for the noised observations over
the assimilation time window. Moreover, this error does
not increase in the forecast window meaning that the pre-
dictability of the analysed dynamical system is satisfactory.
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Figure 4. Time evolutions of errors. Comparison between
the case of perfect observations and the case of twin exper-
iments.

4.2 Experimental dataset
In section 4.1, the strong constraint 4D-Var approach

has been applied successfully for a laminar cylinder wake
obtained by numerical simulations. Here, data assimila-
tion will be applied on data obtained by 2D-2C PIV mea-
surements for a turbulent cylinder wake (Benard et al.,
2010) corresponding to a sub-critical flow regime (ReD =
DU∞/ν = 40000 where D = 40mm is the cylinder diame-
ter and U∞ = 15.6 m.s−1 is the free-stream velocity). The
database contains Ns = 5130 snapshots taken at a sampling
frequency fs = 1k Hz over approximatively 400 periods of
vortex shedding. First, a snapshot POD has been performed
on this dataset. The first 16 POD modes capture 31% of the
flow energy. It was found to be sufficient for describing the
wake flow.

Strong constraint 4D-Var A strong constraint 4D-Var
approach is now applied to the first 128 time steps contained
in the database. Compared to the case of section 4.1, the dy-
namics is much more complex and the PIV data correspond
to a 2D description of a pure 3D physical phenomenon. The
observations are then noised and incomplete, a typical sit-
uation where data assimilation should help to reconstruct
optimally the flow states. As previously, a POD ROM de-
rived this time with Ngal = 16 served as dynamical model
for the assimilation.

Similarly to the case of the numerical database, the
background of the initial condition is chosen as aP

i (t = 0).
For the background of the coefficients of the model (12), the
situation is different since the configuration is more com-
plex. In the previous case, the coefficients were initialized
to zero. Here, a preliminary identification is performed fol-
lowing the method described in Cordier et al. (2010). The
background coefficients Cb

i , Lb
ik and Qb

i jk are searched as to
minimize a quadratic cost functional I given by

I (Ci,Lik,Qi jk) = (14)

1
Tcal

∫ Tcal

0

∥∥∥∥
daaaP

dt
(t)−Mgal(aaa

P(t),Ci,Lik,Qi jk)

∥∥∥∥
2

dt,

where Mgal corresponds to the right hand side of (12) and
where Tcal = 102.4ms is the length of the identification win-
dow. Finally, the same values as in section 4.1 are chosen
for the covariant matrices.

The results of strong constraint 4D-Var are represented
in Fig. 5. For the first POD modes, the analysed dynamics
is well reproduced and is smoother than the observations,
especially for the modes 1 and 2 corresponding to the Von
Kármán vortex shedding. For higher order modes, the es-
timation obtained by 4D-Var has a smaller amplitude than
the observations. This difference of quality between the es-
timation of the large and fine scales can be explained by:
i) POD truncation that neglects in the POD ROM the effect
of the fine scales on the large scales of turbulence, ii) 2D
observations used for describing a 3D phenomenon, and iii)
signal-to-noise ratio that is lower for the fine scales. The
objective of the next section is to see if the 4D-Var estima-
tion can be improved by using a weak constraint 4D-Var
approach.

Weak constraint 4D-Var Here, the dynamical con-
straint given by the POD ROM (12) is relaxed and the mod-
elling error is considered to be represented globally with
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an additive Gaussian noise w(t). The same background so-
lutions (0,Cb

i ,L
b
ik,Q

b
i jk) as the ones used previously in the

strong constraint 4D-Var approach is now employed for per-
forming a weak constraint 4D-Var. In addition, the values
of the covariance matrices are also the same as in the strong
constraint 4D-Var. The analysed solution is shown in Fig. 5
for comparison with the solution obtained by strong 4D-Var.

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

a
2

a1

1

-0.4

-0.2

0

0.2

0.4

0.6

-1 -0.5 0 0.5 1

a
3

a1

1

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8
1

1.2

0 20 40 60 80 100 120

a
1

time step

1

-0.4
-0.2

0
0.2
0.4
0.6
0.8
1

1.2

0 20 40 60 80 100 120

a
3

time step

POD
st 4D-Var
w 4D-Var

1

Figure 5. Results of 4D-Var for the PIV dataset. Compar-
ison between strong (st) and weak constraint (w) 4D-Var.
Axes associated to a temporal coefficient are multiplied by
a factor 1000.

The estimations obtained by weak constraint 4D-Var
approach are qualitatively slightly better than those ob-
tained by strong constraint 4D-Var. However, we have to
keep in mind that the additive noise w(t) is defined only
over the assimilation window preventing the use of the anal-
ysed model for forecasting the flow dynamics.

CONCLUSION
4D-Var data assimilation is a well established method

in meteorology and oceanography. Essentially, it combines
different inhomogeneous sources of information (data, dy-
namical model) to estimate optimally the true state of the
system and to potentially predict its future dynamics. In this
paper, this approach has been applied in a fluid mechanics
context to a POD ROM of a cylinder wake flow. The con-
trol parameters were respectively the initial conditions and
the coefficients of the POD ROM for the strong constraint
4D-Var and the initial conditions and an additive noise in
the weak constraint 4D-Var.

The strong constraint 4D-Var procedure has first been
tested on a numerical dataset corresponding to a low value
of Reynolds number. The original dynamics was well re-
produced in the case of the perfect observations and also
in twin experiments. Moreover, a good predictability of the
analysed dynamical model was found. For the experimental
database and the strong constraint 4D-Var, only the dynam-
ics of the higher POD modes is well reproduced. The dy-
namical constraint was then relaxed by considering a weak
constraint 4D-Var. With this approach, the estimation was
qualitatively improved over the assimilation window but no
prediction is possible.

An important result of this study was to demonstrate
numerically that the modification of the initial condition
plays a crucial role for capturing the correct dynamics with
a POD ROM. Finally, the success of the 4D-Var approach is

deeply linked to the accurate estimation of the different co-
variance matrices used in the procedure. This point should
be studied more carefully in the future.
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