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ABSTRACT
This  study  takes  place  in  the  framework  of  the 

enhancement of the stability of POD-Galerkin Low Order 
Dynamical  System  (LODS)  identified  from  Time-
Resolved  particle  Image  Velocimetry  (TR-PIV) 
measurements.

As proved by Noack et.  al.  (2005), the dynamics of 
incompressible  flows  can  be  efficiently  represented  by 
empirical LODS containing constant, linear and quadratic 
terms.  However,  POD-Galerkin  LODS  are  known  to 
diverge,  or  damp,  rapidly  in  time  if  left  uncontrolled, 
which led a number of authors to introduce regularization 
terms  in  order  to  stabilize  the  models  via  constrained 
optimization problems (Bergmann et al. 2005).

From a  stochastic  point  of  view,  the  Kalman Filter 
(Kalman, 1960) and its derivatives can be used to stabilize 
the  evolution of  dynamical  systems,  provided that  state 
laws and observable data are available. In this formalism, 
LODS  are  modelised  as  discrete  time  hidden  Markov 
processes in which the data of interest are represented by 
hidden variables  that  are  only accessible  from the state 
law and their relationships with observable variables. The 
purpose of Kalman filtering is to operate from both a state 
law  and  measured  data  in  order  to  generate  the  best 
possible estimate of the hidden variables.  In this study the 
observations are provided by hot-film measurements and 
linked to the Kalman filter using the partial Least Square 
Regression (PLSR) (Wold, 1966) as an alternative to the 
Linear Stochastic Estimation (LSE) (Taylor and Glauser, 
2004)  for  over-determined  data.  Thus,  applying  a 
combination of PLSR and Kalman filters to POD-Galerkin 
LODS can be seen as a solution to reconstruct and analyse 
unsteady  flows  while  preserving  the  physics  governing 
their  dynamics  and  without  inserting  adjustment  or 
regularisation terms.

MOTIVATION AND OBJECTIVES
For a dynamical system and a series of observations of 
this  system  in  time,  sequential  data  assimilation  is  a 
method  which  combines  the  observations  with  prior 
knowledge  of  the  current  state  of  the  system to  obtain 
updated and improved estimates of the distribution of true 
model  states  or  parameters.  However,  a  complete 
observation of the state of a dynamical system is usually 
impossible. Furthermore, in a sequential data assimilation 
framework, the observation space can consist of physical 
quantities of a different nature to those of the state of the 
dynamical  system  under  consideration.  A  dynamical 

system  may  therefore  be  controlled  via  independent 
experimental data.

In  fluid  mechanics,  the  linear  stochastic  estimation 
(LSE) is widely used to reconstruct the velocity field (or 
other quantities) from measurements carried out at one or 
more points in the flow field (Adrian 1977). This estimate 
can also be made using the extended POD which serves to 
estimate the rate of correlation between a signal (parietal 
pressure, velocity, etc.) and each POD mode of the flow. 
The estimation of the correlated part of the signal is then 
identical to a LSE decomposition (Boree 2003). Examples 
of the use of LSE can be found in the works of L.Hudy 
(2007), Murray (2003) and Taylor (2004), which combine 
LSE  with  pressure  measurements  in  order  to  obtain  a 
complete  description  of  velocity  fields  for  various 
geometries such as axi-symmetric jets or cavities. Several 
extensions of LSE have also been studied; on this subject 
the  works  of  Hudy  (2007)  and  Tinney  (2006)  can  be 
consulted.  However,  and  despite  being  extensively,  and 
successfully, used in fluids mechanics, the LSE can suffer 
from “over-fitting“  phenomena  in  configurations  where 
the  input  data  are  highly  correlated  in  time  (Gapentine 
1997, Mason 1991, Lipovetsky 2001). In such cases, the 
lack of statistical independance in the observations makes 
the  linear  model  highly  sensitive  to  noise  or  small 
disturbances  (Cornillon  and  Matzner-Lober  2011). 
Generalized  regression  techniques  like  the  Partial  Least 
Squares  Regression  (PLSR)  can  be  envisioned  to 
overcome these LSE issues. The PLSR is a data analysis 
method which was initially proposed by Wold (1966) as 
an alternative to multiple linear regression when there is 
strong multicollinearity among the descriptors or when the 
number of descriptors is much higher than the number of 
individuals. It is mainly used to predict a set of dependent 
variables  from  a  set  of  explanatory  or  descriptive 
variables.

Besides, LSE is considered as a static mapping since it 
uses  only  one  sample  of  the  unconditional  source  to 
estimate the flow state (Cattafesta 2008). A more accurate 
reproduction of the dynamics of an unsteady flow can be 
obtained using dynamic estimators like the Kalman filter 
(Rowley 2005). A POD complementary technique called 
Multi-time-delay LSE was proposed by Durgesh (2010) as 
an alternative to LSE. Given a number of past and future 
measurements of the pressure signal, this method consists 
in estimating the time evolution of the first  POD mode 
coefficients  and providing a  low dimensional  and time-
resolved reconstruction of the flow field at a given  instant 
(Cattafesta 2008; Tu 2012),
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In this work, the construction of the dynamical system 
is  based  on  a  Galerkin  projection  of  the  Navier-Stokes 
equations  on  a  reduced-dimension  basis  determined  by 
Proper Orthogonal Decomposition (POD). Thanks to its 
optimality property, the POD allows the definition, via a 
set  of  flow  solutions  originating  from  a  numerical  or 
experimental  database,  of the best  approximation of  the 
flow field database from an energy perspective,  using a 
limited number  of  proper  functions.  A model  reduction 
methodology, called POD-Galerkin, is then used to define 
a reduced order flow model by Galerkin projection of the 
Navier-Stokes equations on a POD basis (see for instance 
Holmes 1996  for a review). The corresponding reduced 
order model (ROM) is a system of ordinary differential 
equations (ODE) of small dimensions, which governs the 
evolution of the temporal coefficients associated with the 
POD modes (Galletti 2004; Buffoni 2006). In order to use 
a reduced order model to reconstruct the flow, its accuracy 
and  robustness  must  be  guaranteed.  Indeed,  it  has  to 
reproduce as faithfully as possible the complex dynamics 
contained in the experimental database while being robust 
to variations of the input parameters or to changes in the 
flow configuration. Howewer, the POD-Galerkin reduced 
order  model  is  non-robust  and  structurally  unstable.  It 
determines in general  a  dynamical system that in many 
cases may lead to erroneous states after a relative short  
time of integration (Rempfer 2000; Noack 2003; Leroux 
et al. 2012). The origins of the lack of robustness of the 
POD-Galerkin  ROM  are  evidenced  at  various  levels 
(Holmes 1996; Rempfer 2000; Noack 2003).

In this paper a calibration procedure is considered, that 
is  based  on  stochastic  methods  which  includes  forecast 
and observation models.  The forecast  model  propagates 
the systems dynamics forward in time and the observation 
model  maps  the  observations  to  model  states  and  a 
probability  density  function,  (pdf)  of  model  and 
measurements  errors.  These  techniques  serve  to 
reconstruct the state of a dynamical system by combining 
the  information  contained  in  the  spatial  and  temporal 
evolution  equations  of  the  dynamical  system  under 
consideration with the physical information contained in 
the observations of this system over time. These methods 
are commonly used in fields such as oceanography and 
meteorology  where  it  is  necessary  to  introduce 
observation data into the model in order to take account of 
the  spatial  and  temporal  specificity  of  the  physical 
phenomenon being studied, and thus be able to make an 
historical analysis of this phenomenon or of the forecast 
(Cao 2007; Fang 2009; Ledimet 1986).

This paper  concerns the use of the ensemble Kalman 
filter (EnKF) to reconstruct the temporal evolution of a 
velocity flow field around a NACA0012 airfoil at an angle 
of attack α=20° and a Reynolds number Re=1000 from a 
hot-wire probe signal (for more details on the application 
of  Kalman  filtering  on  the  POD-Galerkin  ROM  see 
Leroux et al. 2012). In order to compare the observations 
with the state of  the system,  we propose to modify the 
observation process in order to link the POD coefficients 
with  scalar  measures  from  an  external  voltage  signal 
obtained  by  hot  film  anemometry.  The  observation 
operator is determined by PLSR and then associated with 
the equations-of-state process provided by POD-Galerkin 

reduced model (POD ROM). The ensemble Kalman filter 
is then applied to the thus-defined state space model in 
order to provide an estimate of the time coefficients of the 
POD from indirect observations.

EVOLUTION MODEL
The  aim  of  this  study  is  to  obtain  a  dynamic 

estimation of the temporal prediction coefficients of the 
Galerkin POD ROM over  the entire time domain using 
measurements of a voltage signal obtained by a hot film 
sensor. In order to assimilate the observations sequentially 
and to dynamically estimate the prediction error variances 
and covariances over time, we apply the EnKF filter on 
the  POD-Galerkin  reduced  order  model  (Leroux  et  al. 
2012) . The state space model used then writes :

Where xk denote the state vector of the dynamical system 

at  time  k  with  initial  pdf  p x0 .  The  mappings 

functions  f  and  h  represent  the  system and  observation 

models  respectively.  Here f k is  a  non  linear  operator 

describing the state propagation between two consecutive 
time steps k-1 and k. The true state at time k is assumed to 

be related to hk , the observation vector which describes 

what observation would be measured given the state xk . 

The  observation yk is  conditionaly  independant  given 

xk and  the  observation  is  represented  by  the  pdf 

p  yk∣x k which is often named as likelihood. 

In this paper, f k correspond to the POD-Galerkin ROM 

and the observation  yk  are the temporal  POD modes. 

We assume that  the stochastic  process  w k  and v k are 

i.i.d  (independant  identically  distributed)  additive 
temporal  white  gaussian  process  with  zero  mean  and 

covariance matrices Q k  and Rk  respectively. The three 

following processes are considered :
the  process  of  the 
prediction modes 

  of the POD-Galerkin ROM.
the  process  of  the 
projection modes  

 from the POD.
the  process  of   the 
observations  based  on  the 

voltage signal from the hot film anemometry.
  
At each time t in the assimilation process, the observation 

process Y 1: k is  associated  with  an  observation  process 

S1:k constructed from samples of signal s taken in a time 

interval I defined as follow :

2

S1:k={s1, s2, ... , sk}

Y 1:k={y1, y2, ... , yk}

X 1:k={x1, x2, ... , xk}

a it k

a it k 
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where n  are time lags seating time t from the samples 

of S chosen for the observation. Here the objective is to 
estimate  the  process  X  from  the  sole  process  of 
observations  S.  The  operator  G  is  determined  using  a 
multiple  nonlinear  regression  between  the  temporal 
projection coefficients of the POD and the hot film signal. 
The  determination  of  G  is  based  on  King's  law  (King 
1914) that establishes a relationship between the norm of 
the incident flow on the sensor and the voltages delivered 
by the hot film anemometer.  We thus get the following 
relation :

where A,B and n are  generally  obtained by calibration. 
Here,  no  calibration  is  performed  and  the  initial  value 
n=0.5 given by King is retained. We can then write the 
following relation :

Since the hot wire is in the wake of the airfoil, the flow 
velocity  on  the  hot  wire  is  partially  correlated  with 
incident flow speed U on the hot film sensor. In this way, 

time  series a i and  s  can  be  correlated,  allowing  us  to 

attempt  to  identify  the  following  relation  :

where the series of coefficients are obtained by multiple 
linear regression. In the framework of this study, operator 
G is determined by PLSR and directly links signal s to 

coefficients a i ,  therefore  the  processes  X  and  Y  are 

directly linked by the identity operator. In this formalism, 
the  observed process  S  is  thus  a  vector  comprising the 

values taken by s2 and s4 in the time interval I k . The 

assumption  is  made  that  observation  errors  are 
uncorrelated  to  each  other,  i.e.  the  error  in  a  given 
observation has no statistical link with the errors in other 
observations.  The  observation  errors  are  assumed to  be 
Gaussian (Kalman 1961). The empirical covariance marix 

Rk
N

 of the EnKF is thus :

where  k is  the  deviation  between  the  observations 

estimated by regressions and the observations,  yk
POD

are the observations obtained by the POD and  yk
PLSR

 

those obtained by PLSR. An approximation by the EnKF 
of the POD temporal prediction coefficients is then given 
by :

where  the  coefficients xk
 f ,i 

are  the  predicted  modes 

obtained  with  the  EnKF  applied  to  the  Galerkin  POD 
ROM. 

EXPERIMENT
The experimental configuration settled for this work 

consists of the flow around a NACA0012 airfoil of chord 
c=60mm at a Reynolds number Re of 1000 and an angle 
of attack α of 20°.  The velocity measurements have been 
done in a square (160mm×160mm) section water tunnel. 
Time-resolved  2D-2C  PIV  measurements  have  been 
carried out  using a  Nd-YAG laser  (Quantel,   2*120mj) 
and a Pulnix Dual tap Accupixel camera (2048×2048px 
image  size),  seeding  was  comprised  of  15  μm  mean 
diameter  polyamid  particles.  The  series  of  2048  PIV 
records  have  been  analyzed  through  a  cross-correlation 
technique  implemented  with  a  Fast-Fourier-Transform 
algorithm in a multi-grid process with 3 iterations (1 at 
64×64 and 2 at  32×32) with 75% and 50% overlapping 
respectively,  using  window  shifting  with  iterative 
deformations  and  Gaussian  sub-pixel  peak  localization 
(Lavision Davis 7). Spurious velocity vectors have been 
identified  by  a  median  filter  and  replaced  by  using 
secondary  cross-correlation  peaks.  The  full  series  of 
experiments  comprised  2048  samples  of  velocity  fields 

obtained at a sampling frequency f PIV  =6,4Hz.

Voltage  signal  measurements  using  a  TSI  hot  film 
probe 1269W of diameter 5mm connected to a constant-
temperature  hot-wire  anemometer  system (DISA55M01) 
is  synchronized  with  the  PIV  apparatus.  This  probe  is 
placed at 7 chords downstream of the trailing edge of the 
NACA0012 profile,  as  seen  in  Figure  1.  The  sampling 
frequency of the hot-wire measurements is 
        =2,5kHz. Thus a large number of samples of  voltage 
signal is avalaible between each PIV measurements of the 
flow. 

The  low  Reynolds  number  of  the  flow  makes  it 
possible to assume a swirling, turbulence-free flow which 
remains  mainly  two-dimensional.  Different  kinds  of 
vortex shedding for a NACA0012 profile according to the 
angle of attack and Reynolds number were determined by 
Huang (2001). Following their classification for α=20° the 
vortex shedding is of type “leading edge vortex“. The full 
sequence  covers  23  vortex  shedding  cycles  with  a 
Strouhal number          =0.265. The sampling frequency 
enables to obtain approximatively 89 snapshots of velocity 
field per by vortex shedding period 

Figure 2 represents snaphots of the flow field estimated 
from PIV for non dimensional times 

Figure 1. Schematic of experimental set-up with 
TRPIV and hot-wire signal.

3
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Figure 2 Snaphots of U(x,y,t) from PIV - t*=5.74 and 
t*=23

ESTIMATION OF THE OPERATOR G BY MULTILINEAR 
PLSR

We consider the regression model defined in section 3 
and used for the PLSR. Response variables Y correspond 
to the temporal projection coefficients of the POD that we 
are  seeking  to  approximate  from  signal  s.  Explanatory 

variables X correspond to signal s2 and s4 . The EnKF 

filter  is  sensitive  to  the  noise  contained  in  the 
observations. This is why, according to a given window, 
the largest possible percentage of variance explained in Y 
will  be  sought  by  PLSR  with  cross-validation.  The 

intervals I k
 i

 (i=1...5) are defined as : 

 The  intervals  selected  are  those  that  provide  a 
maximum  percentage  of  explanatory  variance  and  a 
reconstruction  error  between  the  temporal  projection 
coefficients and those estimated by PLSR. As the system 
for  acquisition  of  signals  does  not  allow  us  to  use  a 

multiple frequency  f s of f PIV  , there is a variability 

in  the  positioning  of  these  intervals  in  relation  to  t. 

Intervals  I k
 i

 constructed  from  the  intervals  in  the 

neighbourhood of t thus undergo this variation.

The  PLS  regression  is  applied  to  these  intervals  in 
order  to  determine  operator  G.  For  each  interval,  we 
increase the  time lag  with a  step of  100 until  the  PLS 
regression  captures  the  maximum  explanatory  variance 
whilst providing a good estimation of the POD temporal 
projection  coefficients.  For  the  PLS  regression,  we 
therefore  select  the number of  principal  components  by 
cross-validation with a percentage of explanatory variance 
higher  than  99.9%,  using  cross-validation  in  order  to 
avoid  problems  of  overestimation  of  the  model.  The 
quality  of  the  regression  is  evaluated  while  using  the 
RMSE  (Root  Mean  Square  Error)  between  the 

coefficients  a i
PLSR

t k    predicted by regression and 

the  observed  coefficients  a i
POD

t k  ,  i.e.  temporal 

coefficients of projection resulting from the POD and the 

multiple coefficient R2  where 

                                                       

in [0,1].  Considering the minimal value of RMSE and the 

maximal  values  of R2 obtained  for  each  intervals I k
 i

, 

the intervals I k
 i

with i=2,4,5 are  selected.

     So as to validate the EnKF results a correction of the 
empirical covariance of the EnKF is provided thanks to a 


2
K  distribution with K degrees of freedom, where 

K is the observation vector dimension. 
     Once the EnKF filter has been correctly set, it is used 
to  reconstruct  the  temporal  prediction  coefficients.  The 
temporal  prediction  coefficients  obtained  are  then 
compared with the coefficients from the POD.

RESULTS
The  Kalman  filter  and  Ensemble  Kalman  Filter 

(EnKF;  Evensen,  1994)  have  been  applied  to  the 
empirically defined LODS. First, the principle of Kalman 
filtering POD-Galerkin LODS is validated on dynamical 
systems reduced to their linear part. Then, the Ensemble 
Kalman filters are applied to the non-linear LODS using 
different sets of observable data.

Finally, The PLSR is applied to provide a regression 
model between the hot-film signal and the POD temporal 
coefficients. This model is then injected as the observation 
term in the Kalman filters to stabilize the LODS.

Figure  3  shows  a  comparison  of  a  temporal  mode 
reconstruction  between  POD  reconstruction  and  EnKF 
LODS with PLSR for the 10th mode of a 10 mode LODS. 
Figure 4 shows  RMSE between projection and predicted 
coefficient for the linear and quadratic POD-ROM. Figure 
5 shows a comparison of the corresponding reconstruction 
of velocity fields between the raw experimental data and 
the  EnKF  with  PLSR  applied  to  a  10-mode  quadratic 
LODS. 

On this test case, the EnKF filter faithfully reports the 
temporal dynamics of the coefficients. The reconstruction 
error  on  each  coefficient  is  low,  both  for  the  first 
coefficients  and  for  the  higher-order  coefficients,  the 
temporal  dynamic  of  which  is  more  difficult  to 
approximate.  The  amplitude  of  the  coefficients  is 

4

I k
1

={t k−100, t k−99, .. ,t k99, t k100}

I k
2 

={t k−600, t k−599, .. ,t k599, t k600}

I k
3 

={tk−1000, t k−999, .. ,t k999, t k1000}

I k
4

={t k , t k1, .. , t k1499, t k1500}

I k
5
={t k−1500,t k−1499,.. , t k−1, t k}

8.10−3 R2=Cor2a i
POD , ai

PLSR
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respected over time, and the POD-Galerkin reduced model 
remains stable over the entire data assimilation process. 
The phase relation of the coefficients is also reproduced. 
However, no definite  trend in the reconstruction can be 
deduced from error between the temporal projection and 
temporal  prediction  coefficients  as  same  orders  of 
magnitude are obtained for all intervals and modes. 

Indeed, this error remains the same for the predicted 

coefficients a2t  , a7t , a9t  for  the  three 

intervals.           

For interval I k
2

the reconstruction error is maximal for 

the predicted  coefficients a1t  , a3t  , for interval

I k
4

its maximal for a6t  and for interval I k
5

 its 

maximal for a4t  , a10t  .

With the linear model and the 
2
K  test we achieve a 

reconstruction  with  an  error  between  2.10-3 and  8.10-3, 
which is relatively homogenous according to the selected 
interval.

CONCLUSION
Kalman Filtering can be used as an efficient strategy 

for stabilizing the evolution of experimentally identified 
LODS  which  naturally  tend  to  vanish  or  diverge. 
Compared  to  regularization  procedures  which  result  in 
complex implementations and tuning, the Kalman filters 
are  parameter-independent  and,  despite  their  complex 
underlying theoretical basis, easy to operate. The injection 
of  external  data  conditionned  using  PLSR  provides 
reliable  observation  terms  which  can  be  efficiently 
processed by the Kalman filters. It can be concluded that 
Kalman filters can be applied to stabilize POD-Galerkin 
LODS  using  observable  data  of  different  nature  and 
quality. 
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Figure 3. Reconstructed temporal modes a1(t), a2(t), a10(t) - Linear ROM  : red dashed line, the temporal POD modes ; blue 

dashed line, result of the EnKF filter for interval I k
2

Figure 4. RMSE of the temporal modes for interval I k
2 , I k

4  , I k
5

(Left) Linear POD ROM - (Right) Quadratic POD ROM

Figure 5. U(x,y,t) reconstructed flow field with the EnKF on the quadratic POD-ROM with 10 temporals modes -

t*=5.74 and  t*=23 - Interval I k
(2)
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