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Abstract
The dispersion of particles in turbulent flows is a very

common, yet not fully understood problem. In this work
we deal with a fully developed turbulent channel flow, at
Reτ = 180. The influence of wall roughness on the veloc-
ity field and on the particle dispersion is analysed. Three
types of surface are studied: a smooth wall, a series of stag-
gered cubes and triangular riblets parallel to the flow di-
rection. The cubes strongly increase the pressure gradient
necessary to maintain a constant mass flow rate, whereas
the riblets yield drag reduction with respect to the smooth
channel case. The particle statistics are analysed in terms
of their mean square separation, for which a theoretical ref-
erence is provided by the Richardson law, which applies
to isotropic turbulence. Significant deviations are found in
the channel flow, dependent on the type of roughness, the
Stokes number and the initial position of dispersion.

1 Introduction
Particle transportation and deposition are important in

a wide range of applications, involving a number of dif-
ferent disciplines. Typical examples range from sediment
transportation in rivers to dispersion of scalars in physio-
logical flows, deposition of droplets in steam turbines and
dispersion of pollutants in the atmosphere. It is interest-
ing to estimate how the dispersion of particles is affected
by a solid surface, as it occurs in channel and pipe flows,
because of the simpler nature of these problems. There are
several studies analysing particle motion in wall turbulence,
both experimental and numerical. Most of the computa-
tional analyses focus on the near wall region and its struc-
tures (Guha (2008), Kaftori et al. (1995), Marchioli et al.
(2003), Pan et al. (1996)), but there have also been efforts
to understand the effect of the large-scale motions (Bernar-
dini et al. (2012)). These studies deal with perfectly smooth
walls, although this condition is rarely achieved in practical
applications. Turbulent flows over rough walls have been
studied extensively (Jiménez (2004)), but the description of
the dispersion of particles over this kind of surface is still
lacking.

Real surface roughness is random in nature but, in or-
der to study the effects on the flow, it is useful to under-
stand the effects of regular geometries, such as bars or three
dimensional elements. The former can be oriented either
transverse to the stream direction, yielding drag increase, or
parallel to the stream, yielding, in some cases, drag reduc-
tion (Orlandi and Leonardi (2006)). In the present study,
three types of surfaces are analysed: the smooth channel for
validation and reference, staggered cubes (3D) and riblets
parallel to the flow direction (2D).

The DNS furnishes all the variables of interest at every
point of the flow, including near to or between the rough-
ness elements. An important quantity, difficult to measure
close to the roughness in experiments, is the wall-normal
Reynolds stress. This parameter is crucial in the transi-
tion from laminar to turbulent flow (Orlandi (2011)), and
it is proportional to the roughness function (Orlandi and
Leonardi (2006)), which is often used to quantify the effects
of the roughness on the mean velocity profile.

The goal of this study is two-fold: i) study the influence
of the roughness on the velocity field, and ii) analyse the rel-
ative dispersion of the particles. The latter goal is achieved
primarily by examining the mean square separation of the
particles, as a function of the initial distance from the wall,
the direction of separation, the Stokes number and the type
of roughness.

2 Physical and numerical model

2.1 Flow phase
The nondimensional incompressible Navier-Stokes

equations, solved in this work, are:

∂ui
∂ t +

∂uiu j
∂x j

=− ∂ p
∂xi

+ 1
Re

∂ 2ui
∂x2

j
+Πδ1i , ∂ui

∂xi
= 0 ,

where Π is the pressure gradient required to maintain a con-
stant mass flow rate, ui is the component of the velocity
vector in the i direction, and p is the pressure. This set
of equations has been discretized in an orthogonal coordi-
nate system, with a staggered second-order finite difference
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method. The integration in time has been made with a third-
order low storage Runge-Kutta algorithm, coupled with a
second-order Crank-Nicolson scheme combined in the frac-
tional step procedure. Further details are found in Orlandi
(2000) and are not repeated here.

The interaction between the flow and the roughness is
reproduced by the immersed boundary technique, which as-
sumes that the velocity is zero inside the body, and applies a
correction to the viscous term at the first grid point near the
solid surface. This method is described in detail in Orlandi
and Leonardi (2006).

2.2 Particles phase
The Lagrangian frame of reference is the most natu-

ral one to deal with the dispersion of particles in a fluid,
therefore the Lagrangian Particle Tracking is used. Under
the assumption of one-way coupling, point-wise, spherical
and neutrally buoyant elements, the only force applied is the
Stokes drag, and the equations of motion of solid particles
are:

dxp
dt = up

dup
dt = cD

τp

(
u−up

)

where xp and up are the position and the velocity of the
particles, u is the velocity of the fluid at the particle position,

τp =
ρpd2

p
18µ is the particle relaxation time, and the Stokes drag

coefficient is corrected with the empirical law (Schiller and
Naumann (1935)) cD = 1+ 0.15Re0.687

p , when the particle

Reynolds number Rep = dp
|u−up|

ν does not comply with the
Stokes flow condition (small Rep). The particle relaxation
time is made dimensionless dividing by the viscous time
scale, to obtain the Stokes number St = τpu2

τ/ν .
Periodicity conditions for the flow in the x and z direc-

tions imply that particles exiting from one side re-enter in
the opposite. It is assumed that when a particle hits a wall,
it is absorbed there. At the beginning of the simulation, a
null velocity has been imposed to the particles, which for
St = 0 immediately becomes equal to that of the fluid.

The motion of the particles is solved by using the flow
velocity stored at equal time intervals. It has been verified
that the results are not influenced by this time interval.

2.3 Setup
Three types of surfaces have been analysed: a smooth

channel (hereinafter referred to as C), staggered rows of
prisms (P, Fig. 1a) and triangular riblets aligned with the
flow (T, Fig. 1b). The roughness is located on the lower
wall (−1.2 < y < −1), while on the upper wall the surface
is smooth. The other dimensions of the computational do-
main are Lx = 8 in the stream-wise direction and Lz = 4 in
the span-wise direction.

All the simulations are performed at Re = uh
ν = 4200

(Reb = 2800) corresponding to a smooth channel with
Reτ = 180. The different values of Reτ on the channel
walls are given in Table 1. For the three-dimensional square
cubes, k = 0.2 corresponds to k+ = 36, therefore the surface
can be considered fully rough (Jiménez (2004)).

This study deals with inertial particles (St = 25) and
tracers (St = 0). The particles are located at t = 0 on dif-
ferent planes (y+0 = 2 and centreline), with random x and z
coordinates. All simulations are performed with 40000 par-
ticles. The elements are coupled, and each pair has an initial

Table 1. Friction velocities and Reynolds numbers at the
lower and upper walls, and percent difference of the mean
pressure gradient, compared to that of the smooth channel

uτ,l uτ,u Reτ,l Reτ,u
Πi−ΠC

ΠC

C 0.0419 0.0420 176.1 176.1 0

P 0.0451 0.0704 189.5 295.9 0.854

T 0.0409 0.0388 171.8 162.8 -0.137

a)

b)

Figure 1. Contour plots of u (left) and v (right) at y=−1.1
(half the height of the obstacles), superimposed on the
roughness elements, for a small portion of the domain; a)
P; b) T

distance d0 = 0.0043714, parallel to the Cartesian axes. The
distance between three sets of 10000 couples is oriented in
the x, y and z directions (referred to as d0,x, d0,y and d0,z).
Statistics are acquired separately over these different sets.
The initial distance and planes where the particles are lo-
cated match those of Pitton et al. (2012), in order to validate
our simulation for the smooth channel.

3 Results
Table 1 indicates an increase of the requested pressure

gradient of about 85% with respect to that of a smooth chan-
nel for 3D obstacles, and a reduction of about 14% for the
riblets. The drag components, computed from the Navier-
Stokes equation in the x direction (not shown), can explain
this behaviour. In the smooth channel, the viscous drag is
the same for both walls, the form drag and the drag due to
the non-linear terms are negligible, as expected. In P, the
viscous drag decreases on the lower wall, and the form drag
is the major component. This is also the term that causes
the oscillatory trend in time for Π, which is an indication of
greater turbulent activity and has been linked to an increase
in the frequency of the bursting. In T, a weak form drag
is present, and the viscous drag on the rough wall is lower:
although the wetted surface is larger, the shear stresses are
lower. This is because the shear stress is proportional to
the velocity gradient in the wall normal direction, which are
smoother than in the plane channel case.

The time evolution of the average square distance of
the pairs is analysed and the differences with the Richard-
son law (Richardson (1926))

〈
d2 (t)

〉
= C2εt3, valid for

isotropic turbulence in the presence of significant scale sep-
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aration, are shown. It is expected that the shear induced by
the wall affects the dispersion, causing higher rates of sepa-
ration, when the distance becomes comparable with the in-
tegral scale of the flow. The exponent of the resulting power
law is also dependent on the distance from the wall.

The results have been validated with those of Pitton et
al. (2012). Fig. 2a shows that the dispersion is little affected
by the initial orientation when the particles are released on
the centreline. A t6 power law is found in this case, showing
that the mean shear causes a significant deviation from the
isotropic turbulence in this zone. Fig. 2b on the other hand
highlights that the orientation is important near the wall.
In this region, the highest dispersion is achieved when the
particles are slightly separated in the wall-normal direction,
because of the sharper velocity gradient. In this case, the
Richardson law is recovered for long times, while a power
law t2 is found for small separations. There is also a sig-
nificant anticipation of the rise of the curve, with respect
to the y0 = 0 case. This is because the velocity differential
are much sharper, and even a small distance can cause the
particles to move apart from one another almost as soon as
they are released. Despite having the same distance from
the wall, the mean separation is higher in the d0,z case than
in d0,x. In these cases, the separation is very fast, reaching
a t8 slope. The reason of this behaviour is due to the ef-
fects of the alternation of low and high speed zones. The
reduced velocity gradient in the x direction explains the re-
duction of the particle dispersion. The contour plot of the
velocity field at the end of the simulation (Fig. 6a-b) shows
the real position of the particles, i.e. the x coordinate is
not constrained in [0,8], in order to visualize only those in
the 0 < x < 16 region. The particles tend to cluster near or
around the low speed streaks, and to avoid the higher veloc-
ity zones . The transverse sections show that the particles
released on the centreline achieve a homogeneous distribu-
tion throughout the whole domain, but when released near
the wall, they cluster inside the streaks (Fig. 5a-c). For long
times, the three curves tend to collapse, showing that even
in the y+0 = 2 case the global shear becomes predominant at
high separations, independently from the initial orientation
of the distance. As said, the Richardson law is recovered
for all three initial orientations.

The results of the rough wall simulations are shown in
Fig. 3 for tracers. The charts at y0 = 0 are not shown be-
cause they highlight the same trend discussed above, with
a slight difference in the absolute values. The fact that the
relative dispersion is not influenced by the roughness in the
centre of the channel is a proof of the limited range of in-
fluence of the rough wall (Townsend’s (1976) similarity hy-
pothesis). When the particles are released near the wall,
the initial orientation is less relevant than in C, implying
that the flow is more isotropic in this region, for both P
and T. The P flow, being the case with the greater turbu-
lent activity, generates the highest dispersion. After 10 vis-
cous time units, the separation in this case is larger than in
the others (see Table 2 for a comparison). The only case
in which it is lower is for inertial particles near the wall.
The plot shows a delay of the separation, presumably re-
sulting from the decrease in velocity caused by the three
dimensional roughness. The collapse of the d0,x and d0,z
curves in the graph can be explained with the absence of a
velocity gradient in the span-wise direction. Flow visual-
izations of P (Fig. 6c-d) show the absence of streaks, which
are the main cause for differential dispersion in the stream
and span-wise directions. The transverse plane visualiza-
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Figure 2. Time evolution of the mean square separation
for St = 0, for the smooth channel
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Figure 3. Time evolution of the mean square separation
for rough channels, St = 0; a) P, b) T
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Figure 4. Time evolution of the mean square separation
for St = 25; a) C, b) P, c) T

tion (Fig. 5e) indicates that the particles are scattered in the
channel more evenly than in the smooth case. In all three
cases, a trend similar to the Richardson law is recovered,
consistently with the previous finding of a better isotropy.
In T, the same power law is maintained at large separations,
with a more shallow slope in the initial transient. The in-
fluence of the initial orientation is less significant than in
the smooth channel, but the profiles do not overlap as in P,
since there is still a velocity gradient in the span-wise direc-
tion. Fig. 6e-f shows the presence of fluid structures similar
to the streaks in the smooth channel. Since they are a re-
sult of the varying distance from the boundary where the
no-slip condition is applied, the effect is reduced to obtain
something in between the two previous cases. However, as
seen in the transverse plane (Fig. 5g), the resulting parti-
cle clusters are not caused by these structures, but by the
boundary itself: the particles arrange themselves around the
riblets, but no significant cluster is formed in the flow over
the roughness elements. The asymptotic behaviour shows a

Table 2. Mean square separation
〈

d (t)2
〉

at t+ = 10

St = 0 St = 25

y0 = 0 y+0 = 0 y0 = 0 y+0 = 0

C 0.696 59.98 0.595 4.398

P 1.130 71.52 0.726 4.111

T 0.657 19.19 0.574 2.283

t3 slope, consistent with the other cases. This would suggest
an independence of the dispersion from the type of surface
for long times. The particle couples that contribute the most
in this interval are those that were able to escape the near-
wall region. This is consistent with the notion of the limited
range of influence of the surface on the overlying velocity
field.

Fig. 4 illustrates the time evolution of the distance of
the inertial particles released near the wall. As seen in the
St = 0 case, there is a significant difference in C between
the initial orientation cases. The delay experienced by the
particles separated in the wall-parallel direction causes the
curves to be even steeper. The same happens in the rough
cases: the growth is delayed and the resulting power laws
show an increase of the exponents. Figs. 5b-d show the
effect of the Stokes number. When y0 = 0, the only differ-
ence is the higher segregation but, in the y+0 = 2 case, there
is also a lower dispersion towards the centre of the chan-
nel. In P (Fig. 5f), most particles settle on the roughness
elements, and the few that escape the near-wall region are
dispersed uniformly in the domain. T shows a different be-
haviour (Fig. 5h): as in the previous case, most particles
are deposited on the wall, but the velocity field is unable to
diffuse the others efficiently, resulting in a higher concen-
tration in the lower half of the channel.

4 Conclusions
In this study the effect of wall roughness on the parti-

cle dispersion is analysed. Three different walls are stud-
ied: a smooth surface, staggered cubes and triangular ri-
blets aligned with the flow. It is found that the direction of
the initial separation between particle pairs is most impor-
tant near the wall. Because of the near isotropy achieved
in the centre, the difference regarding this parameter is neg-
ligible. This provides additional evidence to the fact that
the wall roughness influence is limited to the near-wall re-
gion. In the smooth wall case, the cause of this behaviour
are the sharp velocity gradients in the y direction and the
low speed streaks, which generate a velocity differential in
the span-wise direction as well. The particles tend to re-
main trapped in the streaks generating small clusters. The
absence of these near-wall structures and the more isotropic
nature of the flow cause a near collapse of the profiles in
the three-dimensional roughness case. With this geomet-
ric configuration, the average dispersion is higher than for
the smooth channel, and the particles are more evenly dis-
tributed. The triangular riblets are somewhere in between:
above the roughness elements, alternate streaks of low and
high speed fluid are generated, but the resulting clustering
of particles is not affected by these weak structures. The
particles are concentrated between the roughness elements,
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St = 0 St = 25

a) b)

c) d)

e) f)

g) h)

Figure 5. Final position of the particles superimposed on the stream-wise velocity at the x = 0 section. a) C: St = 0, y0 = 0;
b) C: St = 25, y0 = 0; c) C: St = 0, y+0 = 2; d) C: St = 25, y+0 = 2; e) P: St = 0, y+0 = 2; f) P: St = 25, y+0 = 2; g) T: St = 0,
y+0 = 2; h) T: St = 25, y+0 = 2

and fail to reach a homogeneous distribution in the rest of
the domain.

The Stokes number has a marginal effect on the mean
square separation: it causes a lower average value, but the
same trends as in the tracers simulations are recovered. As
expected, the deposition rates increase significantly, and the
overall dispersion is reduced. The roughness effect is also
highlighted: in C, the segregation in the streaks is clearer
than in the tracers cases while, in P and in T, more particles
settle on the obstacles or remain segregated in the near-wall
region.
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a)

b)

c)

d)

e)

f)

Figure 6. Final positions of the particles in 0 < x < 16, superimposed on a xz section at y = −0.99 of the last velocity field;
a) C: St = 0; b) C: St = 25; c) P: St = 0; d) P: St = 25; e) T: St = 0; f) T: St = 25
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