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ABSTRACT
The proposed study focus on the interplay of hydro-

dynamic turbulence, radiative heating and particle trans-
port. These three fundamental phenomena are encoun-
tered simultaneously in many branches of physical science,
from meteorology to engineering, oceanography and astro-
physics. The flow under interest is a novel phenomenon
that is responsible for the high local concentration of inertial
particles in presence of thermal radiation. Specifically, we
consider a large number of particles, immersed in a trans-
parent fluid, and subject to thermal radiation. Initial non-
uniformities in particle concentration result in local temper-
ature fluctuations, due to the different absorptivity of the
dispersed and carrier phases. Under the influence of grav-
ity or other acceleration fields, fluid motion is induced by
gas expansion and buoyancy, altering the particle distribu-
tion and inducing higher non-uniformities. With respect to
other dispersed multiphase flow problems, the main differ-
ence is the retroaction of the dispersed phase on the carrier
fluid, which happens here through the thermal energy re-
leased in the fluid by conduction and convection. The equa-
tions of motion are simplified according to the Oberbeck-
Boussinesq approximation, whereas in the particle equation
of motion only the Stokes drag and the gravitational force
are retained. Those equations are solved by DNS using a
pseudo-spectral method, and the evolution of the particle
velocities and positions is obtained by Lagrangian tracking.
The objective of this paper is to investigate the consequence
of the peculiar “two-way coupling” forcing and its conse-
quences on the resulting turbulence.

INTRODUCTION
Multiphase flows in which a denser phase is carried by

a lighter fluid are obliquitous in nature, and find multiple
applications in industrial problems. From sandstorms in the
atmosphere to plankton in the oceans, from fuel droplets in
combustors to particulate emission from car exhausts, in all
these cases the coupling between the dispersed and the car-
rier phases is critical to understand and predict the system

behavior. In most relevant situations the carrier fluid flow
is in the turbulent regime, and the inertial particles cannot
follow its rapid fluctuations. The velocity lagging of the
dispersed phase can lead to a high local concentration in
zones of shear and away from vorticity cores (Squires &
Eaton, 1991). If the loading is high, or the particle size is
comparable to the minimal flow scales, the dispersed phase
influence the carrier flow, altering for example the turbulent
activity (Gore & Crowe, 1991; Boivin et al., 1998; Meyer,
2012).

In several natural phenomena, turbulent dispersed mul-
tiphase flows occur under strong thermal radiation. In cloud
physics, preferential concentration is believed to play an
important role in determining the rate of droplet coales-
cence (Grabowski & Wang, 2013; Shaw, 2003). Recent
direct numerical simulations show that the clustering of
droplets enhances the transmittance of solar radiation (Mat-
suda et al., 2012). In circumstellar disks, turbulent clus-
tering appears to be critical for the aggregation of chon-
drules and other constituents into primitive planetesimals
(Shariff, 2009; Cuzzi et al., 2001). Among the many indus-
trial applications where particle-laden turbulence presents
itself in conjunction with radiation, we quote the injection
of fuel sprays in combustion chambers (Watanabe et al.,
2008), aluminum particles in solid rocket motors (Dois-
neau et al., 2013). Another potential application is solar
energy harvesting applications, in particular solid particle
solar receivers. These are direct absorption devices which
use solid particles enclosed in a cavity to absorb concen-
trated solar radiation. Solid particles provide a high area-to-
volume ratio, which enables efficient absorption of concen-
trated sunlight (Siegel et al., 2010; Miller & Koenigsdorff,
2000; Klein et al., 2007; Bertocchi et al., 2004). Important
is also the question of the geoengineering for climate. Solar
radiation management using albedo-enhancing aerosols in-
jected into the stratosphere has been identified as the most
affordable and effective option for altering the gross radia-
tive budget of the earth (Shepherd, 2009), but issues regard-
ing the injection and the stability of such aerosol are still
open (Keith, 2010).
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Figure 1. (a) Typical flow configuration. (b) Scheme of
the interplay between fluid momentum, fluid temperature
and particles. The plain arrows represent the leading order
interactions. The red arrows emphasize the feedback loop.

In the proposed study the radiation provides the funda-
mental forcing to the fluid motion, by heating the dispersed
phase providing a strong feed-back of the particles on the
flow. We consider a large number of randomly distributed
particles immersed in a transparent fluid (Fig. 1). Non-
uniformities in particle concentration (either due to inher-
ent randomness, or induced by previous turbulent agitation)
result in local temperature variations, due to the different
absorptivity of the dispersed and carrier phases. The ther-
mal gradients lead to gas expansion and buoyancy, alter-
ing the particle distribution and potentially inducing higher
non-uniformities. The relative impact of gas expansion and
gravity depends on the intensity of the radiation and acceler-
ation fields, respectively. The coupling between local par-
ticle concentration, temperature fluctuations and hydrody-
namic forcing is schematically illustrated in Fig. 1. With
respect to other dispersed multiphase flow problems, the
main difference is the retroaction of the dispersed phase on
the carrier fluid, which happens here through the thermal
energy released in the fluid by conduction and convection.
In this situation, the forcing of the flow is largely different
from the large-scale stirring encountered in turbulent con-
vective flows.

GOVERNING EQUATIONS
We focus on the weak radiative flux regime. In this

limit, we can assume that the temperature of the system
is quasi-stationary, and that the density variation is small
enough to be retained only in the buoyancy forcing term.
In line with these assumptions, the governing equation of
the carrier phase are obtained in the framework of the
Oberbeck-Boussinesq approximation with periodic bound-
ary conditions (Borue & Orszag, 1997). They read:

∇.u = 0 (1)

Dtu = − 1
ρ

∇p+ν∇2u+gαθez (2)

Dtθ = κ∇2θ +
q′

ρc f
(3)

where Dt = ∂t +u.∇, ν is the kinematic viscosity, κ is the
thermal diffusivity, θ = T−T is the temperature fluctuation
around the reference temperature (which is take here as the
spatially average fluid temperature), α is the isobaric ther-
mal expansion coefficient, c f is the fluid heat capacity, g is
the acceleration due to the gravity, and q′ = q−q represents
the spatial fluctuations of the thermal source term, with q
the total heat flux absorbed by the system per unit volume.

It is further assumed that the particles present a much
higher density than the fluid and are very small compared to
the computational mesh. It is then legitimate to consider the
particles as material points. Retaining only the inertia, the
drag, the gravity and the buoyancy, the evolution equations
for a particle are given by:

dtxp = up (4)

dtup =
u−up

τp
+

ρp−ρ
ρp

gez (5)

xp is the particle position coordinates, up is the particle ve-

locity, ρp is the particle density, and τp =
2
9

ρp

ρ
1
ν

(
d
2

)2
is

the Stokes relaxation time.
Concerning the particles temperature, in order to re-

tain only the minimal physics for capturing the dynamics of
feedback loop forcing (see fig. 1), we assumed that the par-
ticles are in thermal equilibrium with the surrounding gas.
This assumption correspond formally to a vanishingly small
particle thermal inertia and imply that the particle tempera-
ture is equal to the fluid temperature at the particle position:
θp = θ(x = xp).

In this flow, the only forcing comes from the thermal
source term q′ in Eq. (3). We assume that the carrier phase
is transparent, and the incident radiative flux on each par-
ticle is totally absorbed. In addition we consider the parti-
cles as monodispersed spheres, with a number density low
enough to neglect their mutual interactions, (both at short
scales (collision) and long scales (screening effect)). There-
fore, the thermal source term in Eq. (3) is only dependent
of the relative local particle concentration:

q′ = ∑
p

Φpδ (x−xp)−q (6)
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where δ is the Dirac distribution and Φp represent the ra-
diative heat flux received by one particle, and it can be re-
lated to q: q=Φpn with n the particle mean number density
(n = Np/H3, H being the size of the computational domain
and Np the number of particle in this box).

Note that in Zamansky et al. (2013), the set of govern-
ing equations has been derived accounting for finite particle
thermal inertia and it has been numerically observed that
the effect of non-equilibrium between the particle and the
gas temperature is negligible as long as the particle inertia
is small.

CHARACTERISTIC SCALES AND NON-
DIMENSIONAL EQUATIONS

Since the forcing of the flow is related to the parti-
cle segregation, we would expect the key parameter to be
the particle Stokes number i.e. the ratio of the particle re-
sponse time to the time scale of the flow structures Eaton
& Fessler (1994). However, unlike in “one-way-coupled”
particle-laden flows (where the fluid flow is not influenced
by the dispersed phase), here the flow time scale is not
known a priori. Nevertheless, an expression for the flow
time scale, t∗, is derived by dimensional analysis. The size
of the box, H, is assumed to be not directly relevant for the
particle segregation, and τp is not retained in order to build
a non-dimensional parameter corresponding to the Stokes
number. Dimensional analysis yields t∗ = (αgβ )−2/5 ν1/5

where β =
dT
dt

=
q

ρc f
is the mean rate of fluid temperature

increase. The temperature scale is set by imposing θ∗= β t∗,
and the length scale, obtained from the Brunt-Väisälä fre-
quency t−1

∗ = (αgθ∗/`∗)1/2, is `∗ = (αgβ )−1/5 ν3/5. Note
that for consistency with the Boussinesq approximation,
one should have T/β � t∗, ie. the rate of increase of the
mean temperature should be much smaller than the time
scale of dynamics of the system.

In connection with equations (1)-(6), the non-
dimensional form of the set of parameters can be expressed
as: the Stokes number St = τp/t∗, the Reynolds number
(or a confinement parameters) γ = H/`∗, the density ratios
ρp/ρ f , the Prandtl number Pr = ν/κ , the Froude number

Fr =
(

gt2
∗/`∗

)−1/2
and the non-dimensional particle num-

ber density C = n`3
∗. The non-dimensionnalization of Eq.

(1)-(6) by scales θ∗, t∗, l∗ and u∗ = l∗/t∗ gives

∇.u = 0 (7)

Dtu = −∇p+∇2u+θez (8)

Dtθ =
1

Pr
∇2θ + c′ (9)

dtxp = up (10)

dtup =
u−up

St
+

ez
Fr2 . (11)

The thermal source term c′ in Eq. (9) reads:

c′ =
Np

∑
p
(δ (x−xp)/n)−1 . (12)

NUMERICAL SIMULATIONS
Equations (7)-(9) are solved using a pseudo-spectral

method (Canuto et al., 1988) in a periodic cubic domain

of length 2π . The 2/3 rule is used for the de-aliasing of the
non-linear term. The time integration is done by the second
order Adams-Bashforth method.

For the particle phase, we use the Lagrangian tracking
approach to compute the evolution of the particle veloci-
ties and position. The gas velocity at the particle position
is estimated from cubic spline interpolation (Garg et al.,
2007). The time advancement for the particle equations also
uses the second order Adams-Bashforth algorithm, with the
same time step as the flow.

The source term (12) is a Dirac distribution which
needs to be projected onto the mesh. A local particle
concentration field is obtain by regularization of the Dirac
masses. Following Maxey et al. (1997) we choose to use a
Gaussian shape regularization. This reads

δ (x−xp)→ δσ (x−xp) = A exp

(
−
(
x−xp

)2

σ2

)
, (13)

with A a normalization parameters. The regularization
length σ is choose to be commensurate to the smallest phys-
ical scale of the flow, i.e. σ ≈ η , where the viscous scale
of the flow can be estimated from the Kolmogorov relation,
and is therefore independent of the mesh size ∆x = H/N
(N3 being the resolution).

The Gaussian kernel (13) is truncated for numerically
efficient computations. The normalization parameter A is
given by A−1 =

∫ ∫ ∫+k2σ
−k2σ exp

(
−
(
x−xp

)2
/σ2

)
dx. In

the present simulations we have chosen k1 = σ/`∗ = 0.5
and k2 = 3 from comparison with other projection schemes
(Garg et al., 2007).

We have run a set of simulations for 7 Stokes numbers
(ranging from 3× 10−3 to 30) and 3 Reynolds numbers
(γ = 40, 80, 220), keeping all other parameters constant.
In particular, we imposed 1/Fr = 0 (non-settling particles),
C = 0.35, Pr = 1 and ρp/ρ f = 909. Although gravity is
necessary to generate buoyancy, non-settling particles were
considered in this set of calculations in order to minimize
the number of concomitant effects at play. Nevertheless,
as a matter of fact, gravitational settling is found to be of
influence only for Fr < 1 (Zamansky et al., 2013).

These simulations correspond to Np = 2.31 ·104, 1.10 ·
105 and 2.00 ·106 particles, respectively, in a domain of size
(2π)3 with computational mesh of 653, 1283 and 2563 ele-
ments, respectively. This ensure that all the physical scale
of the flow are properly resolved. All simulations were initi-
ated in quiescent conditions (zero velocity and temperature
fluctuations) and particles randomly distributed in space.

RESULTS AND DISCUSSION
In the investigated regime it appears that a feedback

loop between the local particle concentration, the temper-
ature fluctuations and the buoyancy forcing can create and
sustain turbulence. This is illustrated in figures 2, the tem-
poral evolution of the turbulent kinetic energy in the box
is presented for three different Stokes number (St = 0.07,
0.3 and 7.3). The influence of the particle response time on
the dynamics is clearly seen. In all three cases, it is seen
that after an initial spin up, the system reach a statistical
steady-state. At low Stokes number the system presents a
low level of turbulent kinetic energy and low fluctuations
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Figure 2. Time evolution of the turbulent kinetic energy for St = 0.07, 0.3 and 7.3, γ = 80 and C = 0.35.

thereof, while for higher Stokes number the turbulent ki-
netic energy rises and oscillates dramatically over time.

Figure 3 presents snapshots of the fluid temperature
and particle local concentration in the domain, for St = 0.07
and 0.3, both having γ = 80 and C = 0.35. In the former
case the fields are fairly homogeneous, whereas in the latter
bulges of high temperature (the plumes) appear in corre-
spondence with regions of high particle concentration (the
clusters). The accretion and disaggregation of the clusters is
entangled with the formation, merging and expansion of the
hot plumes that surround them. The phenomenon is heavily
intermittent, and drives large spatio-temporal fluctuations.

In Figure 4, we plot the variance of the fluid tempera-
ture and the mean turbulent kinetic energy (from both spa-
tial and temporal average) versus the Stokes number, for
three different size of the computational domain. The non-
monotonic dependence of the variance of the fluid tempera-
ture as well as the turbulent kinetic energy of the system re-
veals the significant nonlinearity of the underlying dynam-
ics governing this problem. In particular the peak observed
around St ≈ 1 is connected to a much higher intermittence
in the particle distribution and flow structures, as seen in
Fig. 3.

As a measure of the local particle concentration, in
Figure 5, we plot the probability density functions of the
cell volumes obtained from the Voronoı̈ tessellation of the
particle position (Monchaux et al., 2010). The PDFs are
compared to the case of particles being spatially distributed
as in a random Poisson process (Ferenc & Néda, 2007).
For both high and low Stokes number (St = 0.003, 0.019
and 29.36), the distributions are close to the Poisson case,
which means that the particles are nearly homogeneously
distributed. At intermediate Stokes numbers (St = 0.074,
0.352, 1.064, 7.343), the Voronoı̈ volume distribution be-
comes much broader. This is the signature of intense parti-
cle clustering: there are regions without particle commen-
surate with the box size as well as an increase of the proba-
bility of finding particles within a very small distance.

As seen in Eq. (6), the source term in the fluid temper-
ature equation is directly dependent of the particle distribu-
tion. Therefore the large clustering observed in Fig. 3 and
5 for St = O(1) results in large temperature fluctuations (as
seen in Fig 4a). The production of turbulent kinetic energy
comes from the work done by the buoyancy force (P =wθ )
and is largely influenced by the large temperature fluctua-
tions. The Figure 6 presents the PDF of the kinetic energy
production term for the different Stokes and Reynolds num-
bers. It is seen that at the smallest Stokes numbers the Pro-
duction presents only small fluctuations commensurate with
u∗θ∗, while for St ≈ 1, the PDF presents giant fluctuations
with values exceeding 50 times u∗θ∗ (which is of the or-
der of the standard deviation). The skewness of the PDF is
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Figure 4. Evolution with the Stokes number and the St and
γ of the fluid temperature variance (a) and the turbulent ki-
netic energy (b). For C = 0.35 and γ = 40, 80, 220.

due to mean positive flux of particle in the vertical direction
which create a dissymmetry in the w-θ correlation (unlike
homogenous turbulent convection (Calzavarini et al., 2006;
Borue & Orszag, 1997)).

The broadband forcing observed for St = 0(1) in Fig.
6 is likely to spans the whole range a flow length scales, and
alter the classical turbulence spectrum. This is observed in
Figure 7, where the three-dimensional turbulent kinetic en-
ergy spectra for the different Stokes and Reynolds numbers
are shown. At small stokes the spectra at large scale present
departure from the classical k−5/3 Kolmogorov spectrum.
At these Stokes numbers the particle distribution is nearly
homogenous (as seen in Fig. 3 and 5) and all the particles
moves approximatively at the same velocity, therefore the
resulting temperature fluctuations have a length scale of the
order of the mean inter-particle distance leading to forcing
only active at small scale. At the highest Stokes numbers,
the particle have of a ballistic like motion owing to their
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Figure 3. (a) and (b): snapshot for γ = 80 and St = 0.07 of the positive temperature fluctuation (colored by θ/θ∗) and particle
concentration (colored by c′/C), respectively. (c) and (d): idem (a) and (b) for γ = 80 and St = 0.3.
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Figure 5. PDF of the logarithm of the normalized volume
of the Voronoı̈ cell, for St = 0.003, 0.019, 0.074, 0.352,
1.064, 7.343 and 29.36 (respectively shifted upward by
1000 units), for γ = 40 (black), 80 (blue) and 220 (red),
and for C = 0.35. Each PDF are compared with the PDF (in
gray) corresponding to the Poisson distribution.

large inertia, it results in large scale temperature fluctua-
tions leading to the observed k−5/3 spectra, although the
particle are also nearly homogenously distributed (see Fig.
5). For Stokes number of order 1, we observed a very large
clustering behavior of the particles, with cluster aggregation
and recombination, therefore the energy input take place on
a large range of time and length scale of the particle clusters
altering the inertial range of the flow and leading to a k−1

energy spectrum.
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Figure 6. PDF of the turbulent kinetic energy produc-
tion term P = wθ , for St = 0.003, 0.019, 0.074, 0.352,
1.064, 7.343 and 29.36 (respectively shifted upward by
1000 units), for γ = 40 (black), 80 (blue) and 220 (red),
and for C = 0.35. Each PDF are compared with the PDF (in
gray) corresponding to St = 0.003 and γ = 40.

REFERENCES
Bertocchi, R., Karni, J. & Kribus, A. 2004 Experimental

evaluation of a non-isothermal high temperature solar
particle receiver,. Energy 29, 687–700.

Boivin, M., Simonin, O. & Squires, K. D. 1998 Direct nu-

5



August 28 - 30, 2013 Poitiers, France

HTE

10
0

10
5

10
10

10
15

10
20

10
-2

10
-1

10
0

E
(k

)+

k
+

Figure 7. Three-dimensional turbulent kinetic energy
spectra, for St = 0.003, 0.019, 0.074, 0.352, 1.064, 7.343
and 29.36 (respectively shifted upward by 1000 units), for
γ = 40 (black), 80 (blue) and 220 (red), and for C = 0.35.
Spectra are compared with the spectra corresponding to
St = 0.003 and γ = 40 and with k−1 and k−5/3 power laws.

merical simulation of turbulence modulation by particles
in isotropic turbulence. Journal of Fluid Mechanics 375,
235–263.

Borue, Vadim & Orszag, Steven A. 1997 Turbulent convec-
tion driven by a constant temperature gradient. Journal
of Scientific computing 12 (3).

Calzavarini, E., Doering, C. R., Gibbon, J. D., Lohse, D.,
Tanabe, A. & Toschi, F. 2006 Exponentially growing
solutions in homogeneous rayleigh-bénard convection.
Physical Review E 73, 035301.

Canuto, C., Hussaini, M.Y., Quarteroni, A. & Zang, T.A.
1988 Spectral Methods in Fluid Dynamics. New York:
Springer-Verlag.

Cuzzi, J. N., Hogan, R. C., Paque, J.M. & Dobrovolskis,
A.R. 2001 Self-selective concentration of chondrules and
other small particles in protoplanetary nebula turbulence.
Astrophys. J. 546, 496–508.

Doisneau, F., Laurent, F., Murrone, A., Dupays, J. &
Massot, M. 2013 Eulerian multi-fluid models for the
simulation of dynamics and coalescence of particles in
solid propellant combustion. Journal of Computational
Physics 234, 230 – 262.

Eaton, J. K. & Fessler, J. R. 1994 Preferential concentra-
tion of particles by turbulence. International Journal of
Multiphase Flow 20, 169–209.
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