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ABSTRACT
A widely occurring problem in fluid dynamics either

in engineering or e.g. hydrology is the turbulent transport
through channels and ducts. ODTLES, a stochastic based
multi-scale and multi-dimensional model, is a promising
tool to describe these flows even including scalar proper-
ties like temperature. We are quantifying the ability of
ODTLES to describe the heated channel flow with respect
to the Prandtl number and the flow through squared ducts
with respect to the Reynolds number.

INTRODUCTION
An interesting challenge in classical mechanics is the

description of a turbulent fluid. A key difficulty in mod-
elling these flows is their multi-scale nature. Even funda-
mental problems like the flow through a channel or duct
are still under study and have been investigated by sev-
eral groups in experiments (e.g. Hirota et al. (1997)) and
numerical studies (e.g. Kawamura et al. (1999), Pinelli
et al. (2010)). Direct Numerical Simulations (DNSs) are
widely used to investigate these fundamental problems be-
cause they are solving the governing physical incompress-
ible Navier-Stokes equations without assumptions. So
DNSs can yield the complex statistics of moderate Reynolds
number channel and duct flows, but are limited mostly to
fundamental research due to the wide range of spatial and
temporal scales emerging in technical and meteorological
flows. These problems are for example treated by modeling
small scales in Large-Eddy-Simulations (LES). These mod-
els have issues in resolving non-isotropic flow regions (e.g.
near wall and stratified flows) and turbulent backscatter ef-
fects. The disagreement in the scientific community about
the influence of the latter effects (e.g. Piomelli et al. (1991))
indicates the lack of understanding.

Figure 1. Coordinate system and geometry of the duct
(left) and the channel (right).

From this point of view, stochastic approaches based
on One-Dimensional-Turbulence (ODT) (e.g. Kerstein
et al. (2001), Kerstein (1999)) and multi-dimensional ap-
proaches incorporating ODT, like ODTLES (e.g. Schmidt
et al. (2008) and Gonzalez-Juez et al. (2011)), are an in-
teresting alternative. The ability of ODT to resolve molec-
ular effects (as DNSs) and to describe even non isotropic
3D turbulence using a stochastic process distinguishes ODT
and ODTLES from techniques such as LES and Reynolds-
Averaged-Navier-Stokes (RANS) models.

NUMERICAL METHODOLOGY
We are considering incompressible flows in a channel

and a duct (see fig. 1). The square duct is bounded by
walls at the faces normal to x3 = {−h,h} and x2 = {−h,h},
the channel by walls at x2 = {0,2h}. All other boundary
conditions are considered periodic to mimic e.g. an infi-
nite streamwise extension in the x1-direction. The turbu-
lent channel can be described by both ODT and ODTLES,
the square duct only by ODTLES due to the three dimen-
sional non turbulent properties (e.g. secondary instabilities)
of the characteristic flow. To understand the approach of
ODTLES, a brief description of ODT will follow first.
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Table 1. Nomenclature

ν kinematic viscosity

κ thermal diffusivity

ρ density of the fluid

h Spatial scale
(e.g. channel half width)

Ω comput. domain

Φ = ∂x1 p mean pressure gradient

( ) time averaged quantity

( )RMS root mean square

〈 〉xk in xk-direction averaged quantity

τW wall shear stress

uτ =
√

τW/ρ friction velocity

Reτ = uτ h/ν Reynolds number

uB =
∫

Ω udV bulk velocity

ReB = uBh/ν Reynolds number

One-Dimensional-Turbulence Model
For a detailed introduction see the publications of Ker-

stein (1999) and Kerstein et al. (2001) and for the scalar ex-
tension we refer to Wunsch & Kerstein (2000), Ashurst &
Kerstein (2005), and Schmidt et al. (2012). ODT emulates
the time evolution of a turbulent 3D fluid in a 1D subspace
w.l.o.g. in the x2-direction (used in the channel case). The
time evolution of a velocity vector u= (u1,u2,u3) along the
directions (x1,x2,x3) and a scalar θ are described by

∂tu(x2; t)+ eu(u(x2; t),y0, l) = ν∂ 2
x2

u(x2; t)−Φ/ρ (1)

∂tθ(x2; t)+ eθ (θ(x2; t),y0, l) = κ∂ 2
x2

θ(x2; t)−Fu→θ (u2(x2; t))

where Fu→θ (u2) is a problem dependent coupling term and
{eu(u),eθ (θ)} is an instantaneous eddy function affecting
{u,θ} within the eddy range x2 = [y0,y0 + l]. This eddy
function is introduced to represent the stochastic procedure
appearing like turbulent advection:

eu : u(x2, t)→ u( f (x2), t)+ cK(x2) (2)

eθ : θ(x2, t)→ θ( f (x2), t)

Here K is a kernel function which in combination with c as-
sures energy conservation and controls the energy redistri-
bution among the velocity components (for details see Ker-
stein et al. (2001)). The mapping function f (x2), represent-
ing the fluid transport, is measure preserving, continuous
and satisfies the requirement of scale locality. These indis-
pensable physical requirements for f (x2) are satisfied by a
triplet map, which places three compressed copies of the
original {u(x2),θ(x2); x2 ∈ [y0,y0 + l]} profile in the eddy

Figure 3. Illustration of the velocities located on the faces
(staggered grid) of an ODT wafer for an ODT line in the
x2-direction. An ODT j-index of zero denotes the lower
boundary of the computational domain. A unit increment
of j corresponds to the ODT-scale while unit increments of
i and k correspond to the LES-scale.

range and reverses the middle copy to preserve continuity:

f (x2)= y0+





3(x2− y0), if y0 ≤ x2 ≤ y0 +
1
3 l

2l−3(x2− y0), if y0 +
1
3 l ≤ x2 ≤ y0 +

2
3 l

3(x2− y0)−2l, if y0 +
2
3 l ≤ x2 ≤ y0 + l

(x2− y0), else
(3)

To insert the eddy function {eu(u),eθ (θ)} into the
time evolution equation (1), the eddy size l and the location
y0 are sampled from a probability distribution representing
the physics. For given {l,y0} an eddy turnover time can be
calculated leading to an occurrence frequency 1

τ . Since the
ODT triplet map is an instantaneous process, the frequency
for the eddy specified by {l,y0} is chosen from an event rate
distribution:

λ (y0, l) =
C

l2τ(y0, l)
=

C
l4

√
Ekin−Epot −Z (4)

involving particular definitions of the kinetic energy Ekin
and the potential energy Epot , which vanishes in the current
cases. The values C and Z are model adjustable parameters.
The latter is introduced to cut off eddies with unphysically
small energy and the parameter C is an overall rate coeffi-
cient determining the strength of the turbulence.

ODTLES
A scalar extension of ODTLES using a passive scalar

is introduced in this section. For a detailed introduction to a
non-scalar ODTLES model see the publications of Schmidt
et al. (2008) and Gonzalez-Juez et al. (2011).

In ODTLES the 3D computational domain is divided
into coarse LES-like 3D control volumes (see fig. 2 (a))
and three coupled and orthogonal sets of ODT lines each
defining a nominally space-filling 3D ODT line domain (see
fig. 2 (b)-(d)). Since ODTLES is developed as a spatial
and temporal multi-scale approach the governing equations
split into the ones solved on the LES-scale and those solved
on the ODT-scale. {∆T,∆X ,∂T ,∂X} denotes the LES-scale
temporal (based on a CFL condition) and spatial incre-
ments and their partial derivatives while {∆t,∆x,∂t ,∂x} cor-
responds to the ODT-scale counterparts. The ODT-scale
fluxes can be divided into the one used in the ODT scheme
(compare eq. (5) with eq. (1)) and the advective fluxes in
the ODT line direction (on a timescale ∆tadv ≈ ∆t).

On the ODT line domains we solve for each direction
xk with k = {1,2,3} (please note the index key in fig. 3) for
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Figure 2. An ODTLES domain Ω is divided into a 3D control volumes (a), with N3
LES so called LES cells (see blue cell; here,

NLES = 4), and nominally 3D ODT domains containing (operationally 1D) ODT lines in x1-direction (b), x2-direction (c) and
x3-direction (d). Each subfigure (b) - (d) shows one characteristic ODT line divided into NODT = 16 wafers. Parts of ODT lines
in each direction are intersecting a LES cell (e.g. blue cell)

the velocities

∫ t+∆T

t
∂t ′uk,i dt ′ = (5)

∆T/∆t

∑
n=1

(∫ t+n∆t

t+(n−1)∆t

[
−eu(uk,y0, l)+ν∂ 2

xk
uk,i−Φ/ρ

]
dt ′
)

+
∆T/∆tadv

∑
n=1

(∫ t+n∆tadv

t+(n−1)∆tadv

[
−∂xk (ūk,kuk,i)

]
dt ′
)

+
∫ t+∆T

t

[
−∂Xi(ūk,iuk,i)−∂X j (ūk, juk,i)

−∂Xi P̄/ρ +∂Xi

(
ν∂Xi uk,i

)
+∂X j

(
ν∂x j u j,i

)]
dt ′

and for the scalar

∫ t+∆T

t
∂t ′θk dt ′ = (6)

∆T/∆t

∑
n=1

(∫ t+n∆t

t+(n−1)∆t

[
−eθ (θk,y0, l)+κ∂ 2

xk
θk−Fu→θ (uk,2)

]
dt ′
)

+
∆T/∆t

∑
n=1

(∫ t+n∆t

t+(n−1)∆t

[
−∂xk (ūk,kθk)

]
dt ′
)

+
∫ t+∆T

t

[
−∂Xi(ūk,iθk)−∂X j (ūk, jθk)

]
dt ′

with the LES-scale pressure P̄ and the temporal averaged
velocities

ūk,i =





1
∆T

∫ t

t−∆T
uk,i dt, if i 6= k

ūk,k(0)−
∫ xk

0

(
∂X j

(
ūk, j
)
+∂Xl

(
ūk,l
))

dxk, else

(7)
An additional model parameter Lmax limits the eddy size l.

All advective fluxes are calculated using a first order
upwind scheme and for the diffusive fluxes a second order
central scheme respectively.

Please note that the velocity component in the ODT
line direction uk,k is not defined in the ODTLES approach
but its time averaged counterpart ūk,k is defined via eq. (7).
On the LES-scale 3D control volumes (see fig. 2 (a)) we
solve a pressure Poisson equation to ensure the divergence
constraint on the velocity field

3

∑
i=1

∂XiŪi = 0 (8)

where the LES-scale velocities Ūi are calculated via spatial
averaging

Ūi =
3

∑
k=1

(
(1−δki)

W (uk,i)

∆Xk

∫ − ∆Xk
2

+
∆Xk

2

ūk,idt

)
(9)

with the Kronecker symbol δki. The weighting function
W (uk,i) couples the ODT line domains. The simplest
choice, used by Gonzalez-Juez et al. (2011) is W (uk,i) =
0.5. We are using

W (uk,i) =
uRMS

k,i
3

∑
l=1

(1−δli)u
RMS
l,i

(10)

Due to this choice of W (uk,i) especially in 3D control vol-
umes near walls, the ODT lines perpendicular to the wall are
weighted higher. This helps to maintain small scale prop-
erties in near-wall flow. For a detailed description of the
pressure Poisson equation leading to terms in eq. (5) we re-
fer to Schmidt et al. (2008).

CHANNEL FLOW
Due to the simple geometry and fundamental nature of

the fully developed turbulent channel flow DNSs have been
done (e.g. by Moser et al. (1999) and references within)
to yield insights into statistical and structural characteris-
tics of wall-bounded flows. There are also investigations of
the convective heat transfer between a turbulent fluid and
the wall of a channel (e.g. Kawamura et al. (1999) and
references within). Also ODT (e.g. Kerstein (1999)) and
ODTLES (e.g. Gonzalez-Juez et al. (2011)) can produce
flow profiles and turbulent budget terms in very good agree-
ment with DNSs for the turbulent channel case.

In this section we compare the to DNS of a heated
channel within the database of Kawamura (2013) with
ODTLES (see section ODTLES) , an adaptive ODT (de-
noted AODT) version (by Lignell et al. (2012)) , and
ODT (see section One-Dimensional-Turbulence Model) for
a Reynolds number Reτ = 395 (based on the channel half-
width h and the friction velocity uτ ) and for Prandtl num-
bers Pr = {0.025,0.71,2}. The fluid in the channel (see
fig. 1 on the right) is assumed to be heated by a uniform
heat flux qW from both walls leading to a linearly increas-
ing so-called mixed mean temperature 〈T̄m〉 whereby the di-
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mensionless temperature is

T (x) =
d〈T̄m〉
dx1︸ ︷︷ ︸

=1/
∫

A ū1dA

x1 +θ(x) (11)

where dA = dydz is the cross-sectional area. This leads to
the ODTLES time evolutions equations (5) and (6) (eq. (1)
for ODT) with the scalar forcing term

Fu→θ (uk,1) =
u2,1∫

A u2,1dA
δk,2 (12)

For further details especially a more detailed derivation of
the forcing term Fu→θ we refer to Kawamura et al. (1999).

The ODTLES domain for Pr = {0.025,0.71} consists
of NLES = 16 LES cells and NODT = 512 ODT wafers, but
NLES = 16 and NODT = 1024 for Pr = 2. The ODT results
are produced with the ODTLES resolution NODT for the
respective cases.

The model parameters for ODTLES, ODT, and AODT
are chosen to be C = 6.35, Z = 392 and the ODTLES spe-
cific parameter Lmax = 2. Please note that the parameters
C and Z are optimized for ODT, not ODTLES. The mean
velocity profile (see fig. 4(a)) and the streamwise and span-
wise velocity RMS (see fig. 4(b)) are shown for the DNS
(by Kawamura (2013)), ODTLES, ODT, and AODT for
Reτ = 395.The budget terms of the kinetic energy are shown
in fig. 5.
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Figure 4. Streamwise velocity u1 and streamwise and
spanwise velocity RMS uRMS

1 (solid) and uRMS
3 (dashed) over

x2 in wall coordinates. For ODTLES we use the notation
ui := u2,i ; i = {1,3}

The underestimation of the velocity root mean square
(from here RMS) at the wall by ODT is a known behavior.
ODTLES also dows this. As investigated by Gonzalez-Juez
et al. (2011) the oscillatory behavior of uRMS

2,i ; i = {1,3} is
caused by the coupling (see eq. (9)) and decreases for higher
NLES. It seems the introduction of the weighting function
(eq. (10)) tends to reduce this oscillatory phenomenon in
the LES cells near the wall. Further investigation and im-
provements of the ODTLES coupling are advisable.

−150 −100 −50 0 50 100 150
−0.4

−0.2

0

0.2

0.4

x
2
 u

τ

/ν

lo
s
s
  

  
  

  
  

 g
a

in

DNS                                     ODTLES & ODT & AODT

 

 

prod

ta

diss

tv

Figure 5. Budget terms of the kinetic energy. The pro-
duction (prod), turbulent diffusion (tv) and Dissipation
(diss) are compared for DNS (at x2 < 0) and (at x2 > 0):
ODTLES(solid), ODT(dashed), and AODT(dotted)

The scalar distribution (see fig. 6(a)) and its cor-
responding RMS (see fig. 6(b)) are also shown for the
discussed approaches (DNS,ODTLES,ODT,AODT). The

0 1 2
0

5

10

15

20

25

30

log(x
2
 u

τ
/ν)

θ
2

 

 

DNS

ODTLES
ODT

AODT

(a)

0 1 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

log(x
2
 u

τ
/ν)

lo
g
(θ

2R
M

S
/P

r)

 

 

DNS

ODTLES
ODT

AODT

(b)

Figure 6. Scalar mean and RMS profiles for Pr = 2
(dashed-dotted), Pr = 0.71 (dashed) and Pr = 0.025 (solid)
vs. x2 in wall coordinates

scalar distribution as well as its RMS is well represented by
ODTLES, ODT, and AODT. The budget terms of the scalar
property (θ ′)2/2 are shown in fig. 7.

Square Duct Flow
Due to the simple geometry and the secondary flow,

DNSs have been done (e.g. Pinelli et al. (2010)) to in-
vestigate the appearance and behavior of these instabili-
ties. Turbulent fluctuations are inducing these secondary
motions. Gonzalez-Juez et al. (2011) showed that ODTLES
is able to describe the kinematics of the square duct flow
with developed secondary instabilities. In this section we
study the ODTLES behavior for various Reynolds num-
bers. ODTLES results for ReB = {1500,2200,3500} are
compared to DNS (by Uhlmann (2013)). {NLES,NODT }
are {16,512}, {32,512}, and {32,1024} for ReB = 1500,
2200, and 3500 respectively. The ODTLES model parame-
ters C = 6.35, Z = 392 and Lmax = 2 are chosen to be equal
to the heated channel flow case.

First, we compare the streamwise velocity and its
RMS (see fig. 8) and the lateral velocity and its RMS
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Figure 8. ODTLES results (solid) for the mean (blue and red) and RMS (green and black) streamwise velocity compared to
DNS results (dashed) for several sections (see color legend)
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Figure 9. Mean and RMS lateral velocity. Meanings of the lines and colors are same as in fig. 8
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Figure 7. Budget terms of the scalar (θ ′)2/2 for Pr =

0.71. Meanings of the lines and colors are same as in fig. 5

(see fig. 9) at certain sections z/h ≈ {−0.25,0.75} with
DNS (by Uhlmann (2013)) for the three Reynolds num-
bers. ODTLES primary and secondary flows are both in
good agreement with DNS results. The agreement improves
with increasing Reynolds number, as observed occasionally
using ODT results, because ODT is especially developed
to describe turbulent flows. In fig. 10 the LES-scale spa-
tially filtered secondary mean flow is found to be in good
agreement with DNS, confirming the results shown in fig. 8
and fig. 9. The LES-scale resolved near-wall flow differs
from the DNS because the LES resolution is not able to re-
solve near-wall effects. In fig. 11 the time-averaged ODT

Figure 10. Contour lines 〈Ū1〉x1 (black), streamlines of
the secondary mean flow (〈Ū2〉x1 ,〈Ū3〉x1) (red) and vor-
ticity ω2D = ∂x3〈Ū2〉x1 − ∂x2〈Ū3〉x1 (RGB color coded) for
ReB = 2200 compared to DNS (left). The LES grid (∆X) is
indicated by white lines. All ODTLES quantities are illus-
trated like cell centered and averaged over all quadrants

wall-normal-resolved flow is shown to be capable of re-
solving the near-wall flow in the ODT-resolved direction
while also capturing the salient features of the interior flow.
For increasing Reynolds numbers the secondary instabili-
ties move towards the corner leading to changes in velocity
orientations on smaller spatial scales. ODTLES is capable
of resolving this phenomenon with NLES = 32 LES cells
at least up to ReB = 3500. Main features of the mean
wall shear behavior with respect to the Reynolds number

5



August 28 - 30, 2013 Poitiers, France

HTC

(a) NLES = 16 (b) NLES = 32

Figure 11. ODT wall-normal-resolved results, using ODT
domains resolved in vertically x2-direction (horizontally x3-
direction) in the lower right (upper left) triangular region for
ReB = 2200 compared for different LES resolutions. The
meaning of the lines and colors are the same as in fig. 10
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Figure 12. Mean local wall shear
ν(∑3

k=2(∂xk 〈uk,1|(xk=−h)〉x1 − ∂xk 〈uk,1|(xk=h)〉x1))/τW

comparison of DNS results (dashed) and ODTLES results
(solid) at different ReB (see color legend)

(described in detail by Pinelli et al. (2010)) can be cap-
tured with ODTLES. The extrema flatten with increasing
Reynolds numbers and the number of extrema increases.

CONCLUSION
In heated channel flows ODTLES and the (A)ODT im-

plementations agree well, showing that the underlying tur-
bulent fluxes produced by (A)ODT in ODTLES do not de-
grade due to the 3D ODT domain coupling. Optimizing
the model parameters C and Z in ODTLES will further im-
prove the agreement. The introduction of weighting func-
tions into this coupling decreases oscillatory effects in the
velocity variations near the wall. The secondary instabilities
occuring in the investigated duct flow are resolved including
their behavior with respect to the Reynolds number, while
ODT is not capable of capturing these 3D effects. While the
ODTLES duct results approach DNS results for increasing
Reynolds numbers an investigation of high Reynolds num-
bers ReB > 3500 is of interest for future work. An exten-
sion of the scalar properties θ2 to all ODT line domains
θk,k = {1,2,3} will allow investigation of e.g. heated ducts
(investigated e.g. by Yang et al. (2009)) and heated cavi-
ties. ODT models are used to investigate buoyant problems

(e.g. Wunsch & Kerstein (2000)). Introduction of buoy-
ancy into ODTLES will extend the range of applications to
atmospheric flows.
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